2022 B.A./B.Sc. Third Semester CORE – 6 MATHEMATICS Course Code: MAC 3.21 (Group Theory–I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Show that in a group G , there is only one identity element.	2
	(b) Show that $\{1,2,3\}$ under multiplication modulo 4 is not a group.	2
	(c) Prove that the set of all 2×2 matrices with real entries and	
	determinant 1 is a group under matrix multiplication.	5
	(d) Prove that if $(ab)^2 = a^2b^2$ in a group G, then $ab = ba$.	5
2.	(a) Show that for group elements <i>a</i> and <i>b</i> , $(ab)^{-1} = b^{-1}a^{-1}$.	2
	(b) Give an example of group elements <i>a</i> and <i>b</i> with the property that	
	$a^{-1}ba = b.$	2
	(c) Prove that if G is a group with the property that square of every	
	element is the identity, then G is abelian.	5
	(d) Describe in pictures or words the elements of D_4 .	5

UNIT-II

3.	(a)	What do you mean by order of an element in a group? Give an example.	n 2
	(b)	Let $\langle a \rangle$ denote the set $\{a^n \mid n \in \mathbb{Z}\}$. Show that for any elem	nent a
		in G , $\langle a \rangle$ is a subgroup of G .	2
	(c)	Suppose that a cyclic group G has exactly three subgroups: G	itself,
		$\{e\}$, and a subgroup of order 7. What is the order of G? What	it can
		you say if 7 is replaced with p where p is a prime?	2+3=5

- (d) Prove that for each *a* in group *G*, the centralizer of *a* is a subgroup of *G*. 5
- 4. (a) Find the centres of the dihedral group, D_n , where *n* is even. 2
 - (b) Show that $H = \{x^2 \mid x \in G\}$ is a subgroup of the abelian group G. 2
 - (c) Let G be a group and H be a subgroup of G. Show that normalizer of H is a subgroup of G. 5
 - (d) Prove or disprove: Any group of prime order p is always cyclic. 5

UNIT-III

-		
5.	(a) Let α and β belong to S_n . Prove that $\alpha\beta$ is even if and only if α	
	and β are both even or both odd.	2
	(b) Give two reasons why the set of odd permutations of S_n is not a	
	subgroup.	2
	(c) Every permutation of a finite set can be written as a cycle or as a	
	product of disjoint cycles.	5
	(d) Define alternating group. Prove that for $n > 1$, A_n has order $n!/2$.	5
6.	(a) Let α and β belong to S_n . Prove that $\alpha^{-1}\beta^{-1}\alpha\beta$ is an even	
	permutation.	2
	(b) Show that A_8 contains an element of order 15.	2
	(c) If the pair of cycles $\alpha = (a_1, a_2,, a_m)$ and $\beta = (b_1, b_2,, b_n)$ have n	10
	entries in common, then show that $\alpha\beta = \beta\alpha$.	5
	(d) Prove that every permutation in S_n , $n \ge 1$, is a product of 2-cycles.	5
	UNIT-IV	
7.	(a) Show that A_n is a normal subgroup of S_n .	2
	(b) Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ has seven subgroups of order 2.	2
	(c) Let G and H be cyclic group. Then prove that $G \oplus H$ is also cycl	ic
	if and only if $ G $ and $ H $ are relatively prime.	5
	(d) State and prove Cauchy's theorem for abelian groups. 1+4	=5
8.	(a) Prove that if H has index 2 in G , then H is a normal subgroup of G	
		2

(b) In $\mathbb{Z}_{40} \oplus \mathbb{Z}_{30}$, find two subgroups of order 12.	2
(c) Prove or disprove: $\mathbb{Z} \oplus \mathbb{Z}$ is a cyclic group.	5
(d) Let G be a group and $\mathbb{Z}(G)$ be the centre of G. Prove that if	
$G / \mathbb{Z}(G)$ is cyclic, then G is abelian.	5

UNIT-V

9.	(a)	Let ϕ be a group homomorphism from G to \overline{G} . Then show that	
		Ker ϕ is a normal subgroup of G.	2
	(b)	Define automorphism of a group. Let G be a finite abelian group and G has no element of order 2. Show that the mapping $g \rightarrow g^2$ is an	
	(a)	automorphism of G . $1+1=$	
		State and prove the first theorem of isomorphism. $1+4=$	3
	(d)	If ϕ is a homomorphism from <i>G</i> to <i>H</i> and σ is a homomorphism	
		from <i>H</i> to <i>K</i> , show that $\sigma \phi$ is a homomorphism from <i>G</i> to <i>K</i> . How	
		are <i>Ker</i> ϕ and <i>Ker</i> $\sigma \phi$ related?	5
10.	(a)	Show that $\mathbb{Z}_n / \langle k \rangle \cong \mathbb{Z}_k$, where <i>k</i> is a divisor of <i>n</i> .	2
	(b)	Suppose that ϕ is an isomorphism from a group G onto a group \overline{G} . Then prove the following: $1 \times 2 =$	
		(i) ϕ carries identity of G to the identity of \overline{G} .	
		(ii) For any elements a and b in G, a and b commute $\Leftrightarrow \phi(a)$ and	
		$\phi(b)$ commute.	
	(c)	If M and N are normal subgroups of G and $N \le M$, then prove that	ιt
		$(G/N)/(M/N) \cong G/M.$	5
	(d)	Prove that every group is isomorphic to a group of permutations.	5