2022

B.A./B.Sc.

Fifth Semester

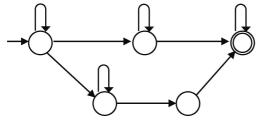
CORE - 12

COMPUTER SCIENCE

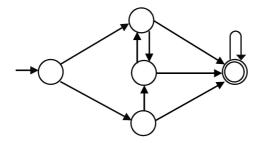
Course Code: CSC 5.21 (Theory of Computation)

Total Mark: 70 Pass Mark: 28

Time: 3 hours


Answer five questions, taking one from each unit.

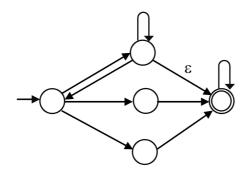
UNIT-I


(a) Write a note on automated theory? Define symbol and alphabet.
 4+2=6
 (b) Explain computability theory and complexity theory.
 (c) Explain Kleene star and Kleene plus with example.
 4
 (a) Explain theory of computation.
 (b) Define string, empty string, length of string and power of an alphabet.
 4
 (c) Explain the various set operations on a language.
 6

UNIT-II

- 3. (a) Give the formal definition an automaton? 4
 (b) Convert the below NFA to DFA: 5
 - (b) Convert the below NFA to DFA: 5

(c) Minimize the given DFA:


4. (a) Give the formal definition of NFA.

4

5

(b) Convert the given ε -NFA to DFA:

10

UNIT-III

5. (a) Define a regular grammar. 4
(b) Construct a CFG over the language L={aⁿb²ⁿ, n≥1} 4
(c) Prove that a language L={aⁿbⁿ, n>0} is not a regular using Pumping Lemma. 6
6. (a) Define context free grammar. 4
(b) Suppose L(G)={a^mbⁿ,m>0 and n>0}, find a regular grammar which produces L(G). 4
(c) Prove that a language L={aⁿbⁿcⁿ, n≥1) is not context free using pumping lemma. 6

UNIT-IV

7.	(a)	What is a context sensitive language? Explain the properties of a	
		CSL. 1+	3=4
	(b)	Define linear bounded automation.	4
	(c)	Design a PDA for the language $L=(a^nb^n, n>0)$.	6
8.	(a)	Define a CSG. Consider a CSG production	
		$S \rightarrow abc aAbc, Ab \rightarrow bA, Ac \rightarrow Bbcc, bB \rightarrow Bb, aB \rightarrow aa aaA.$	
		What is the language generated by this grammar? 4+	2=6
	(b)	Define a push down automaton.	4
	(c)	What is an instantaneous description and turnstile notation?	4
		UNIT-V	
9.	(a)	Explain a decidable and undecidable language.	4
	. /	Explain the closure properties of a recursive language.	4
		Give the formal definition of a Turing machine.	6
10.	(a)	What is halting problem?	2
	(b)	Write a note on recursive enumerable languages.	4
	(c)	Design a Turing machine for the language L={0 ⁿ 1 ⁿ 2 ⁿ } where n>0).
			8