2022

B.A./B.Sc.

First Semester

CORE - 2

COMPUTER SCIENCE

Course Code: CSC 1.21 (Computer System Architecture)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT–I		
1.	 (a) Explain digital computer with a block diagram. (b) Draw circuit diagram for A + B'.(C.D)' using only NAND gate. (c) What are encoder and decoder? (d) Express (w'+x).(y'+z) to its canonical form. (e) What are flip flops? List and explain the various types of flip flops. 	3 2 2 2 =5
2.	 (a) What do you mean by computer design, organisation and architecture? (b) Write a note on the XOR and XNOR gates. (c) Explain half adder and full adder. (d) Simplify F (w,x,y,z) = ∑(0,1,2,3,5,6,7,9,11,14,15) using K-map. 	3 2 4 5
UNIT-II		
3.	 (a) Subtract 110111₂ from 1111101₂ using 1's complement. (b) Explain in detail the various number system. (c) Convert 51.7₈ to its equivalent binary, decimal, and hexadecimal number. 	2 6
4.	 (a) Explain hexadecimal number system. (b) Write the 1's complement of 11101. Add 111101₂ with 111110₂ 1+2= 	2=3

(c) Subtract 1110111, from 111111, using 2's complement. 3 (d) Convert $45.A_{16} = (\underline{})_2 = (\underline{})_8 = (\underline{})_{10}$ 6 **UNIT-III** 5. (a) Define instruction code and operation code. (b) What is an instruction? Explain the life cycle of an instruction. 1+5=6(c) Explain bus system in computer. 6 6. (a) What is a register? List and explain the various types of registers. 1+6=7(b) What do you mean by interconnected structure? List and explain the types of interconnection structures. 1+6=7**UNIT-IV** 7. (a) Explain stack and stack pointer? Explain the operations on stack. 2+2=4(b) What is an interrupt? List and explain the types of interrupts. 1+3=4(c) Explain RISC and CISC in detail. 6 8. (a) What is an addressing mode? 2 (b) Explain machine language and assembly language. 4 (c) Convert the infix expression: a + b * c - d/e to postfix expression. 8 **UNIT-V** 9. (a) What do you understand by input and output? 2 (b) Explain RAM and ROM in detail. 6 (c) Explain the modes of data transfer in peripherals. 6 10. (a) What is an input-output interface? 2 (b) Write a note on magnetic disk and magnetic tape. 6 (c) Explain direct access memory in detail. 6