2022 M.Sc.

Third Semester

CORE – **09**

CHEMISTRY

Course Code: MCHC 3.11 (Inorganic Chemistry - III)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

	0111-1					
1.	(a) Discuss the IR stretching frequencies of ammine complexes.(b) Write short notes on the IR spectras of the complexes with:	5				
	(i) Sulphato as ligand (ii) Hydroxo as ligand 2½	$/2 \times 2 = 5$				
	(c) Give the applications of IR spectroscopy.	4				
2.	(a) What is the distinguishing factor between hydroxo complexes a aquo complexes in the IR spectrum?	and 4				
	(b) Explain with examples some unidentate and bidentate sulphato					
	complexes.	5				
	(c) Write notes on the following: 2 ¹ / ₂	$\frac{1}{2} \times 2 = 5$				
	(i) Aquo complexes					
	(ii) Thiocyanato complexes					
UNIT-II						
3.	(a) What are hyperfine line?	2				
	(b) Give the difference between NMR and ESR spectroscopy?	3				
	(c) How many ESR hyperfine lines are present in the following					
		$\times 3 = 9$				
	(i) $[Cu(NH_3)_4]^{2+}$ (ii) $[Ti(H2O)_6]^{3+}$					
	(iii) $[Cu(en)_2]^{2+}$					
	Given, Cu ($I = 3/2$, Ti ($I = 3/2$, N ($I = 1$), H ($I = \frac{1}{2}$)					

4.	(a)	Calculate the hyperfine lines present in ESR spectra of $\stackrel{\bullet}{N}$ H $_2$.	
		Given, $N(I = 1)$, $H(I = \frac{1}{2})$	3
	(b)	How many NMR signals are present in the following? Mention the	
	()	intensity ratio. $2\times 2=$:4
		(i) H_3PO_3 (ii) H_3PO_3	
	(c)	Which nuclear spin (I) value will follow Pascal's triangle of intensity	
		ratio?	1
	(d)	Calculate 19 F NMR total signals found in the following. $3\times2=$	6
		(i) BrF_5 (ii) PCl_2F_3	
		Given, $P(I=\frac{1}{2} \text{ and } F(I=\frac{1}{2})$	
		UNIT-III	
5.	(a)	Briefly discuss the instrumentation of ESI-MS. Give its applications	
	()	in biomolecules. $4+2=$:6
	(b)	Explain one type of ionisation technique in mass spectroscopy.	4
	(c)	Write the fragmentation and bar graph of n-pentane.	4
6.	(a)	Discuss the instrumentation of MALDIMS.	4
	(b)	Write notes on the following: $3 \times 2 =$	6
		(i) Molecular ion technique	
		(ii) Organometallic representative compound	
	(c)	With diagrammatic representation, give the instrumentation of mass	
		spectroscopy.	4
		UNIT-IV	
7.	(a)	Discuss the spectral parameter of magnetic interaction.	4
	(b)	Discuss the Mossbauer spectroscopy application of structure	
		elucidation.	4
	(c)	Write short notes on the following: $3\times 2=$	6
		(i) Recoil energy	
		(ii) Doppler shift	
8.	(a)	Write short note on Mossbauer spectrum.	4
	(b)	Discuss the instrumentation of Mossbauer spectrometer.	4
	(c)	Explain the Mossbauer spectroscopy applications of: $3\times2=$:6

- (i) Presence of π -bonding
- (ii) Oxidation state and electronic configuration

UNIT-V

9.	(a)	Discuss the four Bravais lattices present in the crystals.	4
	(b)	Draw the stereographic projection of the point group 4, 3, 32 and	
	` '	mm2.	4
	(c)	Explain the symmetry elements present in the tetragonal space group	p
		I4 ₁ by showing the equivalent positions and coordinates present in i	t.
		•	6
10	(a)	Write brief notes on the X-ray diffraction by crystals and give the	
		derivation of Bragg's equation. 3+3=	=(
	(b)	Illustrate (100), (110), (111) and (112) planes in cubic lattice and	
		direction indices of [010], [111], [100] and [120].	6
	(c)	Draw the diagrams of the monoclinic space groups P2 and A2.	2