2022 M.Sc. First Semester CORE – 04 CHEMISTRY Course Code: MCHC 1.41

(Physical Chemistry-II)

Total Mark: 70 Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Define the following:	2×3=6
		(i) Activity (ii) Activity coefficient	
		(iii) Ionic strength	
	(b)	Obtain an expression for the Debye-Hückel limiting law.	7
	(c)	What is electrochemical potential?	1
2.	(a)	Define solution number. Explain the different types of solu	tion number
		with examples.	5
	(b)	Derive the expression of Debye-Hückel-Onsager equation	on for an
		electrolyte.	5
	(c)	Write a note on the structure of water.	4

UNIT-II

(a) State the demerits of	both Helmholtz-Perrin and Gouy-Chapr	nan
model. Explain the S	tern model of the electrical double layer.	2+4=6
(b) Derive an expression	of chemical potential charge acting in an	l
electrolytic solution u	using Debye-Hückel theory of an ion-ion	
interaction.		6
(c) Define concentration	polarization.	2
		on. 5 5
	 model. Explain the S (b) Derive an expression electrolytic solution to interaction. (c) Define concentration (a) Derive Born equation 	(c) Define concentration polarization.

Pass Mark: 28

(c) Compare the graphical representation of potential energy versus distance from the electrode for all the three models of electrical double layer.

4

UNIT-III

(a)	State Fick's second law of steady state diffusion.	2
(b)	Explain the momentum flux in terms of coefficient viscosity.	4
(c)	Define diffusion coefficient. Establish the Einstein relation betw	veen
	the diffusion coefficient and the ionic mobility.	2+6=8
(a)	Discuss the viscosity and mean free path of a perfect gas.	4
(b)	What do you mean by flux of electric field? Explain with the h	elp of
	units and dimensional formula.	4
(c)	Write an essay on the thermodynamic view of thermal conductive terms of "energy of thermal reaction" with supporting diagram	
	(b) (c) (a) (b)	(a) Discuss the viscosity and mean free path of a perfect gas.(b) What do you mean by flux of electric field? Explain with the h units and dimensional formula.(c) Write an essay on the thermodynamic view of thermal conduction.

UNIT-IV

7.	(a) Write the postulates of non-equilibrium thermodynamics.	4
	(b) Establish the expression for the entropy production due to heat flo	W.
		7
	(c) Explain fluxes and forces in terms of phenomenological equation.	3
8.	(a) What are electrokinetic phenomena? Discuss.	7
	(b) Derive an expression for entropy production and entropy flow in	
	open systems.	7

UNIT-V

9.	(a) Explain the concepts of distribution in statistical thermodynamics.	2
	(b) Derive an expression for Maxwell distribution law.	6
	(c) What is ensemble average? Explain.	4
	(d) Give the postulates of statistical mechanics.	2
10.	. (a) Explain the Einstein theory for heat capacity of solids.	3
10.	. (a) Explain the Emstern theory for heat capacity of solids.	J
10.	(b) Discuss Bose-Einstein statistics.	6
10.		