2022 M.Sc. First Semester CORE – 03 CHEMISTRY Course Code: MCHC 1.31 (Physical Chemistry–I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Explain the algebra of operators.	2
	(b) Prove that if the eigenfunctions of a Hermitian operator have diff	erent
	eigenvalues, they are orthogonal.	3
	(c) Discuss the Lagrange's equation of motion.	3
	(d) Derive an expression for the energy of a rigid rotator using the	
	Schrödinger equation.	6
2.	(a) Write a note on energy eigenvalue equation.	2
	(b) Derive an expression for a particle in 1-dimensional box.	5
	(c) Discuss in detail the quantum mechanical tunnelling.	7
	UNIT–II	

3.	(a) State and prove the Hellmann-Feynman theorem.	5
	(b) Considering the spin eigen functions discuss the singlet and triple states of hydrogen molecule.	et 3
	(c) Show that $\psi_{SP} = \frac{1}{2} (2S \pm 2P_Z)$	3
	(d) Write the secular determinant for butadiene using Hückel molect orbital theory.	ular 3
4.	(a) State and prove the variation theorem.(b) Write a note on non-crossing rule and correlation diagram.	6 4

(c) What are the approximations made in Hückel theory for conjugated π system? 4

UNIT-III

5.	5. (a) What is CMC of surfactants? Explain the factors affectin		2			
		of micellization of surfactants. 1+6=	-7			
	(b)	Discuss the thermodynamics of micelle formation by mass action				
		model.	4			
	(c)	Define surface free energy. Calculate the height to which water will				
	rise in a glass capillary if the radius of the tube is 0.02 cm. The					
		surface tension of water is 0.0728 Nm^{-1} . $1+2=$	=3			
6.	(a)	Derive an expression for Laplace equation for pressure across an	1			
	(1)	interface.	4			
	(b)	If the area occupied by a nitrogen molecule is 0.805 nm ² , calculate	~			
		the surface area per gram of silica gel.	2			
	(c)	Write the assumption of Langmuir adsorption isotherm and derive the	ıe			
		expression pertaining to it.	6			
	(d)	Give the classification of surfactants.	2			
	UNIT–IV					
7.	(a)	Describe the substitutional and interstitial solid solutions and explain				
		the distortions that are caused by them.	6			
	<i>(</i> 1)					

- (b) What is an element of symmetry? Show that a cube has 23 elements 2+4=6of symmetry. 2
- (c) What are intrinsic semiconductors? Give examples.

8.	(a)	Discuss the thermodynamics of formation of Schottky and Frenkel	
		defects.	6

- (b) A certain solid crystallizes in a body centred cubic lattice. First order X-ray ($\lambda = 0.154$ nm) reflection maximum for a set of (200) planes was observed at 30°. Calculate the edge length of the unit cell. 3 5
- (c) Explain with a neat diagram the band theory of solids.

UNIT-V

9.	(a)	Explain the following giving reasons:	3
		(i) Molecules for which dipole moment varies during vibration	
		exhibit vibrational spectra.	
		(ii) Homonuclear molecules like N_2 and O_2 are microwave inactive but HCl and CO are microwave active.	
		(iii) Vibrational frequency v for an excited state of a molecule is smaller than the ground state.	
	(b)	Calculate ΔE for radiation of wavelength $\overline{v} = 2.5 \text{ cm}^{-1}$.	2
	(c)	Discuss the rotational spectra of polyatomic molecules.	4
	(d)	Calculate the reduced mass and the moment of inertia of D ³⁵ CI molecule using internuclear distance of 0.1275 nm.	
		(Given ${}^{35}CI = 34.97 \ \mu$ and $D = 2.014 \ \mu$)	4
	(e)	What is selection rule?	1
10.	(a)	The fundamental and first overtone of NO are centred at 1876.06 cm^{-1} and 3720 cm^{-1} respectively. Evaluate the equilibrium vibrational frequency, the anharmonicity constant and the zero point	
	<i></i>	energy of the molecule.	3
	` '	Explain the P, Q, R branches.	3
	(c)	Discuss the quantum theory of Raman spectroscopy and show how stokes and anti-stokes lines appear in the Raman spectrum of a	
		molecule.	5
	(d)	Explain the effect of isotopic substitution in rotational spectroscopy.	3