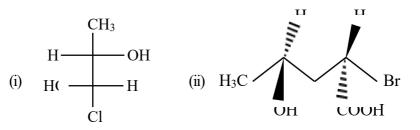
2022 M.Sc. First Semester CORE – 02 CHEMISTRY Course Code: MCHC 1.21 (Organic Chemistry–I)

Total Mark: 70 Time: 3 hours Pass Mark: 28


4

2

Answer five questions, taking one from each unit.

UNIT-I

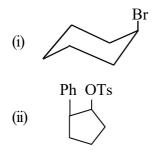
1. (a) Assign R and S configuration of chiral carbons of the following compounds: 2+2=4

- (b) Define the following terms with their suitable examples: 2+2=4
 - (i) Axial chirality
 - (ii) Planar chirality
- (c) Draw Flying Wedge, Fisher and Newman projection formula for the compound 1-Bromo propane-1, 2-diol. Convert its Fisher projection into Sawhorse and Newman projection.
- 2. (a) Discuss the conformers of 1,2-dimethyl cyclohexane and draw its potential energy diagram.
 - (b) What are stereoselectivity and stereospecificity? Explain them with suitable examples. 4
 - (c) Discuss the stereochemical aspects of addition of HBr to propene. 4
 - (d) Write a short note on Racemic modification.

UNIT-II

3.	(a)	What is SHAB theory and what is its role in nucleophilic substitution	ı
		reaction?	5
	(b)	What is acid base catalysis? Explain with suitable examples.	4
	(c)	How does a π -bond act as neighbouring group and participating to	
		accelerate nucleophilic substitution reactions?	5
4.	(a)	Draw and discuss Hammett plot and Hammett equation.	5
	(b)	What is Tschitschibabin reaction? Give an example and explain its	
		mechanism.	4
	(c)	Under what conditions a benzene ring undergoes nucleophilic	
	()	substitution reaction and explain the mechanism of hydroxylation of	
		nitrobenzene with its mechanism.	5
		UNIT-III	
5.	(a)	What is $E1CB(E_1CB)$ elimination reaction? Give an example and	
		discuss its mechanism. Mention one of the favourable conditions.	5

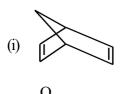
- (b) Discuss the stereochemistry of E₂ elimination of threo isomer of 1-chloro-1, 2-diphenylpropane including its anti-periplanar, syn-periplanar and anti-clinical conformers.
- (c) Mention the percentage feasibility of syn and anti-elimination od cyclohexyl bromide.

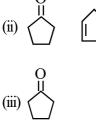

1

1

4

9

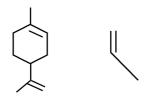

- 6. (a) What is α -elimination? Give an example.
 - (b) Discuss the syn-anti-elimination of the following compounds:



(c) Discuss the effect of leaving group, attacking base and substrate structure towards elimination reactions.

UNIT-IV

- 7. (a) Explain Paterno-Buchi photoaddition reaction with suitable example. 6 (b) Write the mechanism of the following reactions: 5 R (i) CH₂=CH-(CH=CH2 (ii) (c) Write the conditions for donor-acceptor relationship to function. 3 8. (a) Explain Photo-Fries rearrangement of anilides and ester with mechanism. 4 + 4 = 8(b) Define the term photosensitization. 11/2
 - (c) Complete the following reactions: $1\frac{1}{2}\times3=4\frac{1}{2}$



UNIT-V

9. (a) Explain electrocyclic reaction of 1,3.5-exatriene by F.M.O. approach.

5

- (b) Explain cycloaddition reaction of two molecules of 1,3-butadiene and indicate the mode of reaction. 5 (c) Explain Cope and Aza-Cope rearrangement with suitable examples and mechanism. 4 10. (a) Explain 1,5-sigmatropic hydrogen shift by F.M.O. taking a suitable example. 4 (b) Explain 1,3-dipolar cycloaddition reaction of ethane with azomethine imine $(CH_{\gamma}^{-}-N=N^{+})$ with suitable diagram. 4 (c) Define chelotropic reaction. Explain addition of carbine to an alkene with suitable diagram. 1+3=42
 - (d) Write the end product of the reaction:

