2022

M.Sc.

First Semester CORE – 01 CHEMISTRY Course Code: MCHC 1.11 (Inorganic Chemistry - I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

(a) Define symmetry elements and symmetry operations. Discuss the different types of plane of symmetry (σ) with suitable example.

1+3=4

4

- (b) Assign the following molecule to their respective point groups. (i) H_2O_2 (ii) NH_3 $\frac{1}{2}\times 6=3$ (iii) XeF_4 (iv) $[Co(en)_3]^{3+}$ (v) CO_2 (vi) PCl_5
- (c) What is a matrix? Discuss the matrix representation of point group C_{2V} . 1+6=7
- 2. (a) Give one example each to the following point group by writing their symmetry elements. $1\frac{1}{2}\times2=3$ (i) C_{3V} (ii) D_{4d}
 - (b) What do you mean by point group? Systematically discuss the symmetry elements and operations present in octahedral geometry with the help of suitable diagrams.
 - (c) Explain the rules which any set of elements or symmetry operations must obey to constitute a group.4

UNIT-II

3. (a) Draw the MO energy level diagram for CO and mention the magnetic character.

	(b)	Write short notes on the following:(i) Allred-Rochow method of electronegativity	3×2=6
		(ii) Orbital symmetry	
	(c)	Explain the stepwise and overall formation constants.	4
4.	(a)	Write short notes on the following:	3×2=6
		(i) Overlap of atomic orbitals	
		(ii) Linear combination of atomic orbitals	
	(b)	Draw the MO energy level diagram for CN and mention the	
		magnetic character.	4
	(c)	Explain the determination of binary formation constant by	
		spectrophotometry.	4

UNIT-III

5.	using		
	Faraday's method. Give its advantages.	4+2=6	
	(b) Write notes on ferrimagnetism and anti-ferrimagnetism.	2+2=4	
	(c) Discuss the quenching of orbital angular momentum in octahedral		
	complexes.	4	
6.	(a) Derive Currie's law equation.	3	
	(b) What is diamagnetism? What is the difference between diamagnetic		
	value and corrected diamagnetic value?	1+3=4	
	(c) Powdered $(NH_4)_2 Co(SO_4)_2.6H_2O$ has $\chi = 6.70 \times 10^{-4}$ a	t 293K.	
	Given that the density = 1.92×10^3 kgm ⁻³ . Calculate diama	agnetic	
	correction and the effective magnetic susceptibility.	4	
	(d) Explain the relationship between magnetic susceptibility a) Explain the relationship between magnetic susceptibility and magnetic	
	moment for a paramagnetic substance.	3	

UNIT-IV

7.	(a)	Explain crystal field splitting of d-orbitals in octahedral complexes	
		with neat diagrams.	4

- (b) Find out magnetic properties of the following on the basis of CFT.
 - (i) $[Mn(H_2O)_6]^{2+}$ (ii) $[Co(NH_3)_6]^{+3}$ $2 \times 3=6$ (iii) $[FeF_6]^{-3}$
- (c) Which metal ion/ions show John Teller distortion?

	(i) Fe^{+3} (low spin)	(ii) Mn ⁺³ (high spin)	
	If yes, mention if it is strong	g or weak JTD.	2+2=4
8.	(a) Calculate magnetic moment	t of the following:	4×2=8
	(i) Ce^{+3} (at.no. 58)		
	(ii) Nd ⁺³ (at.no. 60)		
	(b) Calculate CFSE of the follo	e	2×3=6
	(i) d^5 (octahedral low spin	·	
	(ii) d^7 (octahedral high spir	,	
	(iii) d ⁴ (tetrahedral high spin	1)	
	τ	JNIT–V	
9.	(a) What are Tanabe-Sugano d	liagrams? Draw the Tanabe	-Sugano
	diagram for a d ¹ metal ion a	and calculate its Dq value.	2+4=6
(b) Explain the molecular orbital theory of octahedral complex			olexes with
	π -bonding.		4
	(c) How many transitions do v	2 0	
Mention the spin forbidden transition that occurs at 15,000 cm			-
			2+2=4

1 (a) ·B 'g B environment.

(b) Discuss the electronic absorption spectra if a high spin $[X(H_2O)_6]^{+3}$ complex. How many bonds are observed in the complex? 3+1=42×3=6

4

- (c) Write short notes on the following:
 - (i) Spectrochemical series
 - (ii) Band intensities
 - (iii) Band widths