2022

B.A./B.Sc.

Third Semester

GENERIC ELECTIVE – 3

CHEMISTRY

Course Code: CHG 3.11

(Chemical Bonding, Transition Metals & Coordination Chemistry)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

UNIT–II				
		even though all of them shows sp ³ hybridisation. 4		
	VSEPR theory and give reasons why they have different bond an			
	(d)	1) Draw the shape of H_2O , NH_3 and CH_4 molecules according to		
	()	theory. $2 \times 2 = 4$		
	(c)) Write any two postulates each of valence bond theory and VSEPR		
	()	However, in all its compounds it shows divalent. Explain.		
	(b)	(b) Beryllium ($Z=4$) has no unpaired electron in its ground state.		
2.	(u)	1+2=3		
2.	(a)	(a) What is hybridisation? Discuss sp hybridisation with an example.		
		PCl_5 , SO_4^{2-} and SF_6 . $2 \times 3=6$		
	(c)	Using VSEPR theory, predict the hybridisation and geometry of		
		O_3 and NO_3^- . $1+1\frac{1}{2}+1\frac{1}{2}=4$		
	(b)	Define resonance. Give the resonance structures of		
		example each. 4		
1.	(a)) Write notes on equivalent and non-equivalent hybrid orbitals with an		

- 3. (a) Discuss the linear combination of atomic orbitals (LCAO) method. 4
 - (b) Write the MO configuration of F_2 molecule. Determine the bond order, magnetic behaviour and draw the MO energy level diagram.

1+1+1+2=5

- (c) Write notes on the following:
 - (i) Van der Waals forces
 - (ii) Effects of hydrogen bonds in boiling point, melting point, and solubility.
- 4. (a) With pictorial representation, explain the formation of bonding and antibonding molecular orbitals by the combination of: $2\frac{1}{2} \times 2=5$
 - (i) s and p_x orbitals and
 - (ii) two p_x orbitals
 - (b) Write the MO electronic configuration of B₂ and N₂ molecules. Calculate their bond order and mention which one should be more stable.
 - (c) What are the main postulates of molecular orbital theory?

UNIT-III

- 5. (a) Write the electronic configuration of the following: $1 \times 4=4$ (i) Cr (Z = 24) (ii) Cu (Z = 29) (iii) Gd (Z = 64) (iv) Ac (Z = 89) (Z= atomic number)
 - (b) What is lanthanoid contraction? Discuss the separation of lanthanoids contraction by ion exchange method. 1+4=5
 - (c) Explain the Latimer diagram for Mn and Cu. $2\frac{1}{2} \times 2=5$
- 6. (a) Discuss the magnetic properties of the first transition series with examples.
 - (b) Most of the transition elements in their compounds show colouration. Comment. 4
 - (c) Compare the oxidation states and magnetic properties of lanthanoids with actinoids. $3 \times 2 = 6$

UNIT-IV

7.	(a)	Give the postulates of VBT and its limitations.	4+2=6
	(b)	Write short notes on the following with an example each:	2×2=4
		(i) Linkage isomerism	
		(ii) Hydrate isomerism	

- 2 -

4

4

- (c) Give the IUPAC name of the following coordination compounds:
 - (i) $[Cu(NH_3)_4]SO_4$ (ii) $[Cr(H_2O)_6]Cl_3$ (iii) $K_3[Fe(CN)_6]$ (iv) $Na_2[Zn(CN)_4]$ (iv) $Na_2[Zn(CN)_4]$
- 8. (a) Find out the magnetic nature of the following by applying VBT and draw their structures: 2×3=6
 - (i) $[FeF_6]^-$ (ii) $[NiCl_4]^{2-}$
 - (b) Discuss the geometrical isomerism in complexes of coordination number 4.

4

4

(c) Discuss with an example each about inner and outer orbital complexes.

UNIT-V

3 9. (a) Give the postulates of crystal field theory. (b) Giving a neat diagram, explain how the d-orbitals split when metal ion is placed in the centre of a tetrahedral field. 5 (c) Determine the magnetic character of the following complex ions by $2 \times 3 = 6$ applying CFT: (ii) $[Fe(H_2O)_{6}]^{2+}$ (i) $[Co(NH_3)_6]^{3+}$ (iii) $[Fe(CN)_{c}]^{4-}$ 10. (a) What is CFSE? Calculate the CFSE of the following: $1+2\times4=9$ (i) d^{5} (low spin octahedral) (ii) d^5 (high spin octahedral) (iii) d^6 (low spin octahedral) (iv) d⁷ (high spin octahedral) (b) Give two factors affecting the magnitude of crystal field splitting. $1\frac{1}{2} \times 2 = 3$ (c) Which one has stronger Jahn-Teller distortion? Give reason. $[Cu(H_2O)_6]^{2+}$ or $[Ti(H_2O)_6]^{3+}$. 2