2022 B.A./B.Sc. **Fifth Semester** CORE - 12**CHEMISTRY** Course Code: CHC 5.21 (Physical Chemistry-V)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	How does the liquid junction potential relate to the transport number of ions t^+ and t^- . Explain with relevant mathematical expressions.	5
	(b)	Explain why Walden rule is valid more accurately in larger ions than	,
		that of smaller ions.	3
	(c)	What does it mean by relaxation effect?	3
	(d)	Write a short essay on concentration cells without transference with a	a
		relevant example.	3
2.	(a)	Discuss the principle underlying conductometric titrations. How would you carry out conductometric titrations of a strong acid versus strong base. $2+4=6$	
	(b)	Calculate the mean activity coefficient Υ_2 of NaCl at the molality of	
		0.01 m.	4
	(c)	How does the solubility product help us to predict the precipitation	
		reaction.	2
	(d)	Explain the term ionic product of water.	2
		UNIT H	

UNIT-II

3.	(a)	What are redox electrodes? Explain with suitable examples.	4
	(b)	Explain the cell reactions taking place in a calomel electrode in the	
		electric field.	4

(c) The EMF of the cell Cd, $CdCl_2 2.5H_2O$ saturated II AgCl(s), Ag in which the cell reaction in

 $Cd(s)+2AgCl(s)+aq \Rightarrow CdCl_2.5/2H_2O+(satu)+2Ag(s)$

in 0.6753 V at 25°C at 0.6915 V at 0°C. Calculate the free energy change and enthalpy of the cell reaction at 25°C. 4

- (d) Give an example each of the following: 1+1=2
 - (i) Metal-amalgam electrode
 - (ii) Metal-metal insoluble salt electrode
- 4. (a) What is Helmholtz Perrin model? Why is it also known as parallel plate condenser model? 3+2=5
 - (b) Write a short essay on electro catalysis and its applications. 3

 $3 \times 2 = 6$

- (c) Write a short note on the following:
 - (i) Quinone-hydroquinone electrodes
 - (ii) Glass electrode
 - (iii) Hydrogen electrode

UNIT-III

5.	(a)	Write short notes on the following:	3×3=9
		(i) Symmetric and anti-symmetric nature of BMO and a BM	0
		(ii) Need of approximation techniques	
		(iii) Paramagnetic nature of oxygen molecule	
	(b)	Outline the solution of the Schrödinger equation for H_2^+ ion. S	ketch
		the BMO and ABMO with respect to electron density on the	bond
		axis.	5
6.	(a)	Construct a MO wave function for the bond between H and C	Cl in
		HCl assuming that the bond is formed from the 1s electron of	Hatom
		and 3p electron of Cl atom.	4
	(b)	Explain the paramagnetic nature of oxygen along with its appli-	cation
		in medical and war field.	4
	(c)	Write a short essay on the need of approximation techniques in	n
		quantum mechanics.	4
	(d)	Give a comparison of MO and VB theory.	2

UNIT-IV

7.	(a)	Give a statement of Frank quantum principle. Explain the principle	
		for the electronic transition of a diatomic molecule. 1+4	=5
	(b)	Write short notes on the following: $3+3=$	=6
		(i) Free electron model of polyenes	
		(ii) Larmor precision	
	(c)	Using the free electron modal theory, estimate wave number of the	
		lowest energy transition in the 1,3,5-hexatriene molecule.	3
8.	(a)	Explain the singlet and triplets states in electronic transition.	4
	(b)	Discuss the spin-spin interaction in NMR.	4
	(c)	Explain the hyperfine structure of methyl radical using ESR spectra	
			4
	(d)	Calculate the ESR frequency of an unpaired electron in a magnetic	
		field of 0.33 T given that for the free electron $g_{a}=2$ and	
		$\mu B = 9.273 \times 10^{-24} \text{ J/T.}$	2
UNIT-V			

9.	(a)	Write short notes on the following with supporting formulae: 3×3	=9
		(i) Molar extension coefficient	
		(ii) Photochemical rate law	
		(iii) Integrated absorption coefficient	
	(b)	Explain why the quenching of florescence occurs.	3
	(c)	Explain the term electromagnetic radiation.	2
10.	(a)	Explain the reasons for low and high quantum yield in photochemic reaction.	al 4
	(b)	Derive the photochemical rate law in terms of Lambert-Beer law.	5
	· /	What does it mean by bioluminescent reaction? Explain with suitab	ole
		example.	3
	(d)	What is meant by photosensitization reaction?	2