2022 B.A./B.Sc. First Semester CORE – 1 CHEMISTRY Course Code: CHC 1.11 (Inorganic Chemistry - I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Define dual nature of electron. Derive de Broglie's equation. 1+3=4
 - (b) Write the electronic configuration of Cl, Ca, P and Fe. Given atomic number of Cl=17, Ca=20, P=15 and Fe=26. 1×4=4
 - (c) Give the main postulates of Bohr's model of an atom and mention its drawbacks. 4+2=6
- 2. (a) What is effective nuclear charge? Calculate the Z_{eff} for
 - (i) 2P electron in N (atomic number 7)
 - (ii) 3d electron in Ti (atomic number 22) 1+2+2=5
 - (b) Explain Hund's rule of maximum multiplicity with an example. 3
 - (c) Draw the shapes of 3Px and $4dx^2-y^2$ with the radial nodes present. Define probability curve and draw probability curve for 1s and 2s orbitals. 3+3=6

UNIT-II

3.	(a)	Define atomic radius. What happens to the radius of an atom as we	
		move down a group and across a period?	1+3=4
	(b)	Define ionisation enthalpy. Discuss the factors affecting IE.	1+4=5
	(c)	Explain the Mulliken's scale of electronegativity.	5
4.	(a) What is electron gain enthalpy? Discuss the factors determining th		ing the
		electron gain enthalpy.	1+4=5

(b) Define van der Waals radius. How is it different from covalent radii?

(c) Carbon in CH_4 is SP³ hybridised which has 25% S-character. The electronegativity of carbon in CH_4 is 2.53. Explain. 4

UNIT-III

- 5. (a) Define solvation energy. What is radius ratio rule? Give its limitations. 1+1+2=4
 - (b) Write Kapustinskii equation and mention some importance of this equation. 1+3=4
 - (c) Write notes on the following:
 - (i) Ion-dipole forces
 - (ii) Dipole-dipole interactions
 - (iii) Induced-dipole interactions
- 6. (a) Define lattice energy. Briefly explain Born-Haber cycle. Calculate the lattice energy in the formation of NaCl crystals. Given that EA=-85.8, IE=117.9, S=26.0, D=57.6 and ΔH_f =-98.3 Kcal/mole respectively. 1+3+2=6
 - (b) Write the main postulates of band model theory. Define conductors and semiconductors. 3+2=5
 - (c) Derive Born-Lande equation.

UNIT-IV

7. (a) Draw the molecular orbital energy level diagram of O_2^{2-} ion, write its molecular orbital configuration and calculate its bond order.

3+1+1=5

3

4

2+3=5

 $2 \times 3 = 6$

- (b) Based on VSEPR theory predict the shapes of NH_3 and SF_4 molecules and mention their state of hybridization. 2+2=4
- (c) Discuss energetics of hybridization. What are the main points of Bent's rule? 2+3=5
- 8. (a) What is bond order? Arrange the following ions N_2^+ , O_2^- , O_2^+ and O_2^{2-} in order of their increasing bond order. 2+2=4
 - (b) Write the postulates of valence bond theory (Heitler-London approach).

(c) What are equivalent and non-equivalent hybrid orbitals? Discuss with an example each. 3+3=6

UNIT-V

- 9. (a) Write the Fajan's rule. What are the effects of polarisation? 3+2=5
 - (b) Discuss in detail any of the two factors of percent ionic character of a polar covalent bond. In HF molecule, the inter nuclear distance is 0.95 A and the dipole moment for the ionic H⁺F⁻ when an electron is completely transferred from hydrogen atom to fluorine atom is given by $4.8 \times 10^{-10} \text{ esu } \times 0.92 \times 10^{-8} \text{ cm}$, i.e. 4.42 D. Calculate the percent ionic character. Given the actual dipole moment of HF molecule is 1.98 D.
 - (c) CO₂ and H₂O molecules are both triatomic but dipole moment of CO₂ zero while that of H₂O is 1.84 D. Comment.
 3
- 10. (a) What are the uses of redox potential data? Mention any two uses. 4
 - (b) What is disproportionation? Explain with an example. 2+3=5
 - (c) Draw the Latimer diagram of chlorine in acidic medium. Write the half cell reactions. 2+3=5