2024 M.Sc. Fourth Semester CORE – 11 PHYSICS Course Code: MPHC 4.11 (Computational Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)) One of the entry in the following table is incorrect and y is a cubic										
		polynomial in x.										
		Use difference table to locate and correct the error.										
		x 0 1 2 3 4 5 6 7										
		y 25 21 18 18 27 45 76 123										
	(b)	(b) Find the root of the equation $x^3 - 2x - 5 = 0$, using bisection										
	. ,	metho	d, corre	ct up to	three de	ecimal	place.				7	
2.	(a)	Find tl	ne root	of the ea	quation	$x^4 - x^{-1}$	-10 = 0	0, using	ζ			
		Newto	n-Raph	nson me	thod co	rrect u	p to 3 d	ecimal	place.		7	
	(b)		1	ng term i		-		-		ole.	7	
		x	2	3	4	5	6					
		у	45	49.2	54.1		67.	4				

UNIT-II

- 3. (a) Convert the following equations into matrix form
 - x 4y z = -5x + y 6y = -12
 - 3x y z = 4
 - (i) Carry out partial pivoting and
 - (ii) Apply Gauss elimination method to find the value of x, y and z

3+5=8

- (b) Solve the following equations using Jacobi's method (five iterations). 4x + 2z = 4 5y + 2z = 3 5x + 4y + 10z = 26
- 4. (a) Find the eigen value and eigen vector of the following matrix. 6

$$A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$$

(b) Using Gauss-Seidel method, solve the following equation 20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25 8

UNIT-III

5.	(a) Using Sterling's formula, estimate the value of $\tan 16^\circ$										8
		θ	:	0	5	10	15	20	25	30	
		tan ():	0	0.0875	0.1763	0.2679	0.3640	0.4663	0.5779	
	<i>(</i> 1)	D 1			1 01		a 1 1			a 1	

(b) By the method of least square, find the straight line that best fits the following data: 6

x	:	1	2	3	4	5
у	:	14	27	40	55	66

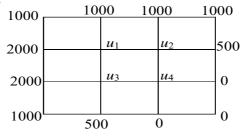
6. (a) The table gives the distance (x) of the visible horizon for the given height (y) above the Earth's surface :

x:	100	150	200	250	300	350	400
y :	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Using Newton interpolation formula, find the value of y when x is 160.

7

(b) Find the polynomial f(x) by using Lagrange's formula and hence find f(3) for the following: 5+2=7


UNIT-IV

7.	(a)	Find y x: y:	v'(0) and 0 4	1 y''(0) 1 8	from the 2 15	e followi 3 7	ing table 4 6	2: 5 2	7		
	(b)		ate $\int_0^6 \frac{1}{1+1}$	л	oy using	taking <i>l</i>	n = 1		7		
		~ ~ ~	apezoida mpson's								
		(11) 51	mpson s	1/3 Tule							
8.	(a) Using three point Gaussian quadture formula evaluate $\int_0^1 \frac{1}{1+x} dx$								7		
	(b) From the table below, for what value of <i>x</i> , <i>y</i> is minimum? Also find the value of <i>y</i> .										
		<i>x</i> :	3	4	5	6	7	8			
		y :	3 0.205	0.240	0.259	0.262	0.250	0.224			
	UNIT-V										
9.	(a) Solve $\frac{dy}{dx} = 3x + y/2$; with $y(0) = 1$ and $h = 0.1$; find $y(0.1)$ using										
		$R-K 2^{nd} \text{ order method.} $									

(b) Evaluate y(0.1) correct up to four decimal places using Taylor's

series method, if
$$\frac{dy}{dx} = x^2 + y^2$$
; $y(0) = 1$. 7

10. Evaluate the function u(x, y) satisfying the Laplace equation $\nabla^2 u = 0$ at the pivotal points of the figure shown below: 14

