2024 M.Sc.

Second Semester CORE – 07 PHYSICS Course Code: MPHC 2.31

(Nuclear & Particle Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	If there is exchange of both space coordinates and spin in an	
		interaction, identify the nature of potential for 1d and 3d.	3
	(b)	Discuss the characteristic properties of deuteron.	5
	(c)	Show that the angle between the neutron and the proton after	
		scattering in the L-system is always 90° .	6
2.	(a)	Estimate the radius of hydrogen ${}^{1}_{1}H$, if the measured radius of	
		Lithium ${}_{3}^{8}Li$ was found to be 2.4 fm.	2
	(b)	Show that nuclear interaction is highly charge dependent.	4
	(c)	Discuss meson theory of nuclear forces.	8

UNIT-II

3.	(a)	Write the selection rule for allowed as well as 1st forbidden for bot	th
		Fermi and Gamow-Teller type.	2
	(b)	Do a theoretical calculation from Fermi theory for the detection of	
		neutrino's masses.	6
	(c)	Discuss the experiment carried out by F. Reines and C.L. Cowan f	for
		neutrino detection.	6
4.	(a)	Write two examples undergoing gamma decay.	2
	(b)	Calculate the energetics of β^+ and β^- decays.	4

(c) Explain the selection rule for gamma emission. Also, discuss briefly the probability of electric field (E) and magnetic field (M). 6+2=8

UNIT-III

5.	(a) Explain compound nucleus theory with experimental evidence.	6
	(b) Implement partial wave method for calculating cross-section.	8
6.	(a) Estimate the kinetic energy expression for the projectile particle i	na
	direct reaction assuming there is no excitation energy.	6
	(b) Explain the statistical theory of nuclear reaction.	8

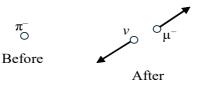
UNIT-IV

7.	(a)	Explain Fermi gas model.	6
	(b)	Discuss Hartee-Fock self-consistency field.	8

8. (a) The binding energy of a nucleus is approximated by the formula $B.E = a_1 A - a_2 A^{\frac{2}{3}} - a_3 Z^2 A^{-\frac{1}{3}} - a_4 (A - 2Z) A^{-1}$, where Z is the atomic number and A is the mass number of the nucleus.

If
$$\frac{a_4}{a_3} = 30$$
, find the most stable isobar of the atomic number Z for a given A.

given A.


- (b) Discuss the smoothing procedure for shell correction using Strutinski method. 4
- (c) Elaborate multipole deformation and briefly discuss rotation of axially asymmetric nuclei. 6

UNIT-V

9. (a) Explain eight-fold way and quark model. 6 (b) A pion at rest decays into a muon and a neutrino as shown below.

8

What is the speed of the muon?

- 2 -

10. (a)	Write a note on unification scheme.	4
(b)	Briefly discuss TCP theorem.	4
(c)	Explain in detail quantum chromodynamics (QCD).	6