2024 M.Sc. Second Semester CORE – 06 PHYSICS Course Code: MPHC 2.21 (Quantum Mechanics - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

4

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Show that a single energy level split into two energy levels according to degenerate perturbation theory. 8
 - (b) Suppose we put a delta function bump in the centre of the infinite

square well $H' = \alpha \delta \left(x - \frac{a}{2} \right)$.

- (i) Find the first order correction to the allowed energies Ψ_1^1 .
- (ii) Find the first three non-zero terms of the correction to the ground state .
- (iii) Find the second order correction to energy E_n^2 . 6
- 2. (a) What is Zeeman effect? Obtain the solution for intermediate Zeeman field effect of hydrogen atom. 6
 - (b) The unperturbed wave functions for the infinite square well are

$$\Psi_n^0(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$
, calculate the first order correction to energy if
the floor of the well is raised by a constant potential V_0 .

(c) Explain spin-orbit interaction in brief.

UNIT-II

3.) Describe time dependent perturbation theory. Deduce the solution of				
	two level systems for time dependent perturbation theory.	8			
	(b) Obtain the transition probability for sinusoidal perturbations.	6			
4.	(a) Explain adiabatic process and prove the adiabatic theorem.	7			
	(b) State and prove Fermi golden rule.	7			
UNIT-III					

5.	(a) Exp	blain the principle of variational method. Obtain the ground state	
	ener	rgy of delta function potential using variational principle.	8
	(b) Obt	ain the ground state energy of an infinite square well using	
	vari	ational principle.	6
6.	(a) Use	the variational method to estimate the ground state energy of	
	hali	um atom.	9
	nen	umatom.	/
		ive the expression for the overlap integral for hydrogen molecule	;

UNIT-IV

- (a) Explain WKB approximation. Obtain the energy eigen value for potential well with two vertical walls using WKB method.
 - (b) Show that the WKB method gives an exact solution to liner harmonic oscillator. 7
- 8. (a) Obtain the transmission probability of tunnelling using WKB method and give a detail account on the application of tunnelling to α -decay.
 - (b) Briefly explain the concept of field emission of electron using WKB approximation. 4

10

6

UNIT-V

- 9. (a) Show that for quantum hard sphere scattering, the total cross-section for low energy scattering is twice the total cross-section of high energy scattering.
 - (b) Deduce the Rayleigh's formula for quantum scattering.

10. (a)	What is soft sphere scattering? Obtain the expression for total cross	5-
	section for low energy soft sphere scattering.	6
(b)	Derive an expression for scattering cross-section for Yukawa	
	potential using Born approximation.	8