2024 M.Sc. Fourth Semester CORE – 12 MATHEMATICS Course Code: MMAC 4.21 (Rings & Modules)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Prove that every field is an integral domain. Is the converse true?	
		Justify.	4
	(b)	If R and S are any two rings, prove that their Cartesian product $R \times$	S
		is also a ring under coordinate wise addition and multiplication.	6
	(c)	Show that any ring can be embedded into a ring with unity.	4
2.	(a)	If G is an additive abelian group, prove that the set of all group endomorphisms of G is a ring under pointwise addition and	
		composition of maps.	5
	(b)	Define local ring, provide some examples and prove that the	
		characteristic of a local ring is either 0 or a power of a prime.	5
	(c)	If I is a left ideal and J is a right ideal of a ring R , prove that IJ is a	
		2-sided ideal of R .	4

UNIT-II

3.	(a)	Prove that unitary modules over \mathbb{Z} are simply abelian groups.	5
	(b)	If N is a submodule of an R -module M , show that the quotient grou	р
		M/N has a natural structure of an <i>R</i> -module.	5
	(c)	If <i>R</i> is any ring, show that <i>R</i> is naturally a left <i>R</i> -module and also a	
		right <i>R</i> -module with usual multiplication in <i>R</i> as the scalar	
		multiplication.	4

- 4. (a) If *M* is an abelian group, *R* is a ring and $End_{Z}(M)$ is the ring of all additive endomorphisms of *M*, prove that *M* is a left *R*-module if and only if there exists a ring homomorphism $\theta: R \to End_{Z}(M)$. 5
 - (b) State and prove the epimorphism theorem for modules. 5
 - (c) Show that a submodule P of an R-module M is a direct summand of M if and only if there is a projection p of M onto P, i.e., p(M) = P. 4

UNIT-III

- 5. (a) If *M* and *N* are *R*-modules, show that their Cartesian product M×N can also be made into an *R*-module in a natural way.
 (b) Show that the cardinalities of any two bases of a free module *F* over a commutative ring *R* with 1 are equal.
 - (c) Prove that every free module is a projective module and justify that the converse is not true by an example. 5
- 6. (a) If R is an integral domain, define torsion submodule of an R-module M and show that the set of torsion elements of M forms a submodule of M.
 - (b) Prove that an *R*-module *P* is projective if and only if every exact sequence of the form $0 \rightarrow M' \rightarrow M \rightarrow P \rightarrow 0$ splits.
 - (c) Prove that any unitary module over a ring with unity is a quotient of a free module.

6

UNIT-IV

7.	(a)	Define simple module and also give an example. State and prove Schur's lemma.	4
	(b)	If $\{M_i\}_{i \in I}$ is a family of <i>R</i> -modules, prove that $\prod_{i \in I} M_i$ is injective	e
		if and only if each M_i is injective.	6
	(c)	Show that every injective module is divisible.	4
8.	(a)	Show that an <i>R</i> -module <i>E</i> is injective if the functor $Hom_R(, E)$ is exact.	6
	(b)	Prove that every $\mathbb Z$ -module can be embedded in an injective	
		\mathbb{Z} -module.	4

(c) Define semi-simple module and prove that a direct sum of semi-simple modules is semi-simple.

UNIT-V

4

9.	(a)	Prove that if a module M is such that it has a submodule N with both	h
		N and M/N Artinian, then M is Artinian.	4
	(b)	If J is the Jacobson radical of A then show that $x \in J$ if and only if	
		$1 - xy$ is a unit in A for all $y \in A$.	6
	(c)	Show that a commutative Artinian ring is Noetherian.	4
10.	(a)	Define nil radical $N(R)$ and Jacobson radical $J(R)$ of a ring R and	
		show that $N(R) \subseteq J(R)$.	3
	(b)	State and prove Jordan-Hölder theorem.	7
	(c)	Show that a semi-simple ring is of finite length.	4