2024 M.Sc. Second Semester CORE – 08 MATHEMATICS Course Code: MMAC 2.41 (Complex Analysis)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1. (a) Let $z_n = x_n + iy_n (n = 1, 2, 3, ...)$ and S = X + iY. Prove that

$$\sum_{n=1}^{\infty} z_n = S \text{ if and only if } \sum_{n=1}^{\infty} x_n = X \text{ and } \sum_{n=1}^{\infty} y_n = Y.$$
5

- (b) Let z_1 be a point inside the circle of convergence $|z z_0| = R$ of a power series $\sum_{n=0}^{\infty} a_n (z - z_0)^n$. Prove that the series must be uniformly convergent in the closed disk $|z - z_0| \le R_1$, where $R_1 = |z_1 - z_0|$. 5 (c) Obtain the Maclaurin series representation for $\frac{1}{1 - z}(|z| < 1)$, and hence, differentiating it, obtain the expansion of $\frac{1}{(1 - z)^2}$. 4
- 2. (a) If a power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges when $z = z_1 (z_1 \neq z_0)$, then prove that it is absolutely convergent at each point z in the open disk $|z-z_0| < R_1$, where $R_1 = |z_1 - z_0|$.

(b) Prove that the power series $\sum_{n=0}^{\infty} a_n (z = z_0)^n$ can be differentiated term by term.

(c) Show that if
$$\lim_{x \to \infty} z_n = z$$
, then $\lim_{x \to \infty} |z_n| = |z|$. 4

5

5

UNIT-II

3. (a) Expand
$$f(z) = \frac{z+3}{(z^2-z-2)z}$$
 in powers of z 5

- (i) within the unit circle about the origin
- (ii) within the annulus region between the concentric circles about the origin having radii 1 and 2 respectively
- (iii) the exterior of the circle with center as origin and radius 2
- (b) Prove that a function f that is analytic at a point z_0 has a zero of order m there if and only if there is a function g, which is analytic and non-zero at z_0 , such that $f(z) = (z z_o)^m g(z)$. 5

(c) Find the residue of
$$f(z) = \frac{z^3}{z^2 - 1}$$
 at $z = \infty$.

4. (a) Prove that an isolated singular point z₀ of a function f is a pole of order m if and only if f(z) can be written in the form

$$f(z) = \frac{\phi(z)}{(z - z_o)^m}$$
, where $\phi(z)$ is analytic and non-zero at z_0 . 5

- (b) Discuss the different types of isolated singularities, with suitable examples.
- (c) Find the residues at the poles of the function

$$f(z) = \frac{z^4}{(a^2 + z^2)^4}$$

UNIT-III

5. (a) Evaluate
$$\int_{0}^{\pi} \frac{\cos 2\theta}{1 - 2a\cos\theta + a^2} d\theta.$$
 7

(b) Use the method of contour integration to show that

$$\int_{0}^{\infty} \frac{x^{6}}{\left(a^{4} + x^{4}\right)} dx = \frac{3\pi\sqrt{2}}{16a}, a > 0.$$
7

6. (a) Evaluate
$$\int_{0}^{\infty} \frac{x^{-a}}{x+1} dx, (0 < a < 1).$$
 7

(b) Prove that
$$\int_{0}^{\infty} \frac{\sin x}{x(x^{2}+a^{2})} dx = \frac{\pi}{2a^{2}} (1-e^{-a}), (a>0).$$
 7

UNIT-IV

7. (a) If f(z) is meromorphic inside a closed contour C and has no zero on C, then show that $\frac{1}{2\pi i}\int \frac{f'(z)}{f(z)}dz = Z - P$, where Z is the number 5

of zeros and P is the number of poles, counting multiplicities.

5

4

4

- (b) Determine the number of zeros, using the argument principle, of $z^{5}+2z^{3}-z^{2}+2z+5$ that lies in the first quadrant.
- (c) Use Rouché's theorem to show that the equation $z^5 + 15z + 1 = 0$

has one root in the disk $|z| < \frac{3}{2}$ and four roots in the annulus $\frac{3}{2} \leq |z| < 2$.

- 8. (a) By using Rouché's theorem, prove that every polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n = 0, (n \ge 1, a_n \ne 0)$ has exactly n roots. 5 5
 - (b) State and prove the Rouché's theorem.
 - (c) Determine the number of zeros, counting multiplicities, of the polynomial $2z^5 - 6z^2 + z + 1$ in the annulus $1 \le |z| < 2$.

UNIT-V

9. (a) Show that the set of all bilinear transformation forms a non-Abelian 5 group under the composition of transformation. (b) Show that the transformation $w = \frac{i-z}{i+z}$ maps the half plane Im z > 0 onto the disk |w| < 1 and the boundary of the half plane onto the boundary of the disk. 5 (c) Find the image of the quadrant x > 1, y > 0 under the transformation $w = \frac{1}{2}$. 4 10. (a) Discuss the conformality of the function $f(z) = z^2$ at the point of intersection of the half lines $y = x, (x \ge 0)$ and $x = 1(y \ge 0)$. Determine the scale factor and the angle of rotation at that point. 5 (b) Show that the transformation $w = \frac{1}{2}$ transforms circles and straight line to circles and straight lines. 5 (c) Find the linear fractional transformation that maps

 $z_1 = \infty, z_2 = i, z_3 = 0$ onto the points $w_1 = 0, w_2 = i, w_3 = \infty$.