2024 M.Sc. Second Semester CORE – 06 MATHEMATICS Course Code: MMAC 2.21 (General Topology)

Total Mark: 70 Time: 3 hours Pass Mark: 28

2+2+2=6

Answer five questions, taking one from each unit.

UNIT-I

1. (a) For a given topological space, define interior, closure, and boundary

of a set. Use the set $A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ in \mathbb{R} with the standard

topology to illustrate these concepts.

- (b) Explain the difference between a basis and a sub-basis for a topology. Illustrate with an example how a topology can be generated from a sub-basis.
 2+2=4
- (c) Define what it means for one topology to be finer than another. Provide an example of two different topologies on the same set where one is finer than the other. 2+2=4
- 2. (a) Define a metric topology and illustrate with an example of a metric that induces the standard topology on \mathbb{R} . Explain how the concepts of open sets in a metric space relate to those in a general topological space. 3+3=6
 - (b) Let (X, τ) be a topological space. Let $A \subseteq X$ and A' is the set of all limit points of A. Then, prove that $\overline{A} = A \cup A'$.
 - (c) If \mathcal{B} is a basis for a topology τ on X, then prove that τ is unique. 4

UNIT-II

- 3. (a) Let (X, τ) and (X, τ') be two topological spaces and $f: X \to Y$ be a function, then prove that *f* is continuous if and only if for every subset *A* of *X*, $f(\overline{A}) \subseteq \overline{f(A)}$. 7
 - (b) Let (X, τ) be a topological space; let *A* be a set; let $p: X \to A$ be a surjective map. Show that the quotient topology on *A* induced by *p* is the largest topology relative to which *p* is continuous. 7
- 4. (a) Show that the subspace [a, b] of \mathbb{R} is homeomorphic with [0, 1]. 4
 - (b) Let f: X → Y and g: Y → Z be functions between topological spaces. Assume f is continuous at a point x ∈ X and g is continuous at f(x). Prove that the composition g ∘ f : X → Z is continuous at x.
 - (c) Define what it means for a function between two topological spaces to be open and to be closed. Provide an example of a function that is both open and closed. 2+4=6

UNIT-III

- 5. (a) Show that the image of a connected topological space under a continuous map is connected. Give an example. 5+2=7
 - (b) If $\{A_{\alpha}\}$ is a collection of path connected subsets of X and if $\bigcap A_{\alpha} \neq \emptyset$, is $\bigcup A_{\alpha}$ necessarily path connected?
- 6. (a) Prove that the topological space (\mathbb{R}, τ_{std}) is connected.
 - (b) What are the components and path components of (\mathbb{R}, τ_i) ? Explain. $3\frac{1}{2}+3\frac{1}{2}=7$

7

7

UNIT-IV

7. (a) Let (X, τ) and (Y, τ') be compact topological spaces. Prove that the product space $X \times Y$, equipped with the product topology, is compact. 7

- (b) Let X be a compact Hausdorff space. Show that if $\{A_n\}$ is a countable collection of closed sets in X, each of which has an empty interior in X, then there is a point of X which is not in any set A_n . 7
- (a) Prove that every closed subset of a compact topological space is compact. Is a compact set in a topological space necessarily closed? 5+2=7
 - (b) Suppose \mathcal{F} is a family of closed subsets of a compact space X such that \mathcal{F} has the finite intersection property. Prove that the intersection of all sets in \mathcal{F} is non-empty. Give an example of a compact space and a family of closed sets with the finite intersection property to illustrate your proof. 7

UNIT-V

- 9. (a) Prove that a topological space (X, τ) is a T_1 space if and only if every singleton set $\{x\}$ is closed. Illustrate with an example of a topological space that is T_1 but not T_2 , and discuss how the property differ. 4+2=6
 - (b) Justify the following statements:
 - (i) If X is a second countable space, then X is a Lindelöf space
 - (ii) Every compact space is Lindelöf, but not all Lindelöf spaces are compact.
 4+4=8
- 10. (a) Prove that a topological space (X, τ) is classified as T_3 if, for every $x \in X$ and any open set U that includes x, there is another open set

V in which x is contained, and the closure of V, denoted as \overline{V} , is completely contained within U. 7

(b) Why all normal spaces are regular? And why the converse is not true? $3^{1/2}+3^{1/2}=7$