4

5

2024

M.Sc.

Second Semester

CORE - 05

MATHEMATICS

Course Code: MMAC 2.11 (Numerical Analysis)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

- (a) Derive the secant method iteration formula.
 (b) Discuss the rate of convergence of Regula-Falsi method.
 - (c) Find the cube root of 13 correct to four decimal places using Newton-Raphson method.
- 2. (a) Define absolute, relative, and percentage error. If $f(x, y, z) = 3\frac{xy}{z^3}$ and errors in x, y, z be 0.001. Compute the maximum relative error in f(x, y, z) when x = y = z = 1. 3+2=5
 - (b) Using Chebyshev's method, find the root of the equation $f(x) \equiv \cos x xe^x = 0$ correct to six decimal places. (take $x_0 = 1.0$).
 - (c) Find the root of the equation $f(x) \equiv x^4 x 10 = 0$ using multipoint iteration method. (perform four iteration) 5

UNIT-II

3. (a) Solve the system of equations by Cramer's rule:

$$x+6y+3z=6$$

 $2x+3y+3z=117$
 $4x+y+2z=283$

(b) Using Cholesky's method, find the inverse of the matrix:

 $\begin{bmatrix} 1 & 2 & 6 \\ 2 & 5 & 15 \\ 6 & 15 & 46 \end{bmatrix}$

4. (a) Find the inverse of the matrix using partition method:

 $\begin{bmatrix} 2 & 1 & 0 \\ 4 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

(b) Find the largest and the smallest eigenvalue and its corresponding

eigenvector of the matrix $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ using power method. 7

UNIT-III

5. (a) Using Newton's divided difference formula, find y(10) given that y(5) = 12, y(6) = 13, y(9) = 14, y(11) = 16.

4

(b) Use Bessel's formula to find y(35), given that:

6

9

7

x	2.5	3.0	3.5	4.0	4.5	5.0
у	24.145	22.043	20.225	18.644	17.262	16.047

(c) Prove the following:

 $1 \times 4 = 4$

(i) If
$$f(x) = e^{ax}$$
, show that $\Delta^2 f(x) = (e^{ah} - 1)^n e^{ax}$

(ii)
$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$

(iii)
$$\sqrt{1+\delta^2\mu^2} = 1 + \left(\frac{1}{2}\right)\delta^2$$

(iv)
$$\delta = \Delta E^{-1/2} = \nabla E^{1/2}$$

6. (a) Construct the Hermite interpolation that fits the data and interpolate at x = 0.5 and x = 1.5

Х	f(x)	f'(x)		
0	4	-5		
1	-6	-14		
2	-22	-17		

(b) Obtain the cubic spline interpolation for the data (taking $M_0 = M_4 = 0$)

7

7

8

х	1	2	3	4	5
F(x)	1	0	1	0	1

UNIT-IV

7. (a) Given the distance *x* cm for various values of time *t* seconds of a particle below. Find the velocity and acceleration when *t*=0.3 second

Time (sec)	0	0.1	0.2	0.3	0.4	0.5	0.6
Velocity (m/Sec)	30.1	31.6	32.9	33.6	34	33.8	33.2

(b) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ of $y = x^{1/3}$ at x = 50, from the table below: 7

х	50	51	52	53	54	55	56
у	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

Compute the magnitudes of errors.

8. (a) Compute the value of the definite integral $\int_{0.2}^{1.4} \frac{dx}{4x+5}$ by trapezoidal rule and Simpson's 1/3 rule and hence calculate the absolute error in each case, (take h = 0.2)

(b) Derive the Gauss two point rule, hence find the value of the integral

$$I = \int_0^2 \frac{dx}{3+4x}$$
 using Gauss two point rule. Compare with the exact solution.

UNIT-V

- 9. (a) Using Euler's method, find the solution of the equation $\frac{dy}{dx} = x + \sqrt{y}, y(0) = 1 \text{ for the range } 0 \le x \le 0.6 \text{ with } h = 0.2.$
 - (b) Consider the initial value problem $\frac{dy}{dx} = x(y+1)$, y(0) = 1 compute y(0.5) with h = 0.1 using mid point method. If the exact solution is $y = -1 + 2e^{x^2/2}$. Find the magnitude of actual errors.
 - (c) Solve the initial value problem $\frac{dy}{dx} = 2x + 3y$, y(0) = 1, using Taylor series method with h = 0.2 over the interval [0,1].
- 10. (a) For the initial value problem $y' = x y^2$, y(0) = 0 apply Milne-Simpson method in the interval $0 \le x \le 1$. (Assume h = 0.25).
 - (b) Reduce the initial value problem $y''' + y'' = x(y')^2 y^2$, with y(0) = 1, y'(0) = 0 to a system of first order initial value problems and find the value of y(1), y'(1)(h = 0.5) using Runge-Kutta method of fourth order.