2024

M.Sc.

Fourth Semester

DISCIPLINE SPECIFIC ELECTIVE - 04

CHEMISTRY

Course Code: MCHD 4.21 (Nano Chemistry & Polymer Science)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Discuss the application of nanomaterials and nanotechnology in	
		modern science.	6
	(b)	Explain how aluminium oxide is used as nanomaterial.	5
	(c)	Write short note on surface plasmon.	3
2.	(a)	Give a detail account of carbon nanotubes with examples.	5
	(b)	Explain how magnesium oxide is used as nanomaterial.	5
	(c)	Write short notes on the following: $2 \times 2 =$	=4
	~ /	(i) Quantum confinement	
		(ii) Quantum size effects	
		UNIT-II	
3.	(a)	Discuss the top-down and bottom-up approaches for the synthesis	
		of nanomaterials.	6
	(b)	Explain the mechanism for nanoparticle synthesis inside the reverse	
	. ,	micelles.	5
	(c)	Briefly describe sono-chemical method.	3
4.	(a)	Give the mechanism for nanoparticle synthesis inside the	
		co-precipitation method.	5

- (b) Explain solvothermal method for the synthesis of nanoparticles. 5 4
- (c) Describe briefly how reverse micelle work as nano reactor.

UNIT-III

5.	(a)	Discuss in detail the geometrical structure of polymer.	5
	(b)	Elaborate on the change of state in polymeric material with change i	n
		temperature.	5
	(c)	"Swelling and the extend of swelling is controlled by two opposing	
		factors, osmotic pressure Π and elasticity of polymeric chain σ ."	
		Justify.	4
6.	(a)	Explain how the three (3) parameters namely temperature, amount of catalyst and role of polymerization control the molecular weight or	of
		size of the polymer molecule during polymerization.	6
	(b)	Discuss how to determine the transition of glass temperature (Tg) by	у
		free volume method.	5
	(c)	Suggest three (3) application of swelling phenomenon of polymers	
		for human use.	3
		UNIT-IV	
7.		Explain Florry-Huggin's and lattice theory of polymer solution. Discuss the TGA and DTA method for determining the molecular	6

	(b)	Discuss the TGA and DTA method for determining the molecular	
		weight of polymers.	6
	(c)	Write a note on entropy of mixing.	2
8.	(a)	Discuss how to determine the molecular weight and molecular	
		dimension using light scattering method.	6
	(b)	Briefly explain polymer degradation and stabilization.	6
	(c)	Write a note on enthalpy of mixing.	2

UNIT-V

9.	(a)	Discuss in detail the behaviour of an ideal or Newtonian fluid with	the
		help of applied stress and the amount of strain or deformation.	6
	(b)	Explain the creep and relaxation of a typical plastics with the help of	of
		an experimental curve model.	5
	(c)	Write short note on the role of stress and strain in the control of	
		polymer deformation.	3

- 10. (a) Explain power law. Illustrate with a plot of log τ_s versus $\log (d\gamma_s / dt)$ for different types of fluid materials. 6
 - (b) Suggest a method for measurement of rheological properties of fluid.
 - (c) Discuss the flow behaviour of a real fluid or non-Newtonian fluid. 4