2024 M.Sc. Fourth Semester CORE – 12 CHEMISTRY Course Code: MCHC 4.21 (Organic Chemistry - IV)

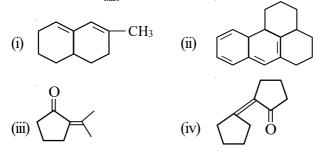
Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Calculate the vibrational absorption frequency of the carbonyl>CO group, if force constant for the double bond is 10×10^{5} gm/ sec². 5
 - (b) Explain fundamentals mode of vibrations in infrared spectroscopy. 5
 - (c) Explain the effect of H-bonding and solvent effect on vibrational frequency.
- 2. (a) Calculate the approximate frequency and wave number of C–H stretching vibration where $K = 5 \times 10^5$ g sec⁻². 6
 - (b) A compound with molecular weight 108 gave the following peaks in its IR spectrum: 3300, 3077, 2899, 1499 and 1456 cm⁻¹. With alkaline potassium permanganate, it is oxidized to an acid. It gives a negative test with FeCl₃. Write the structural formula of the compound.
 - (c) What is the most necessary condition for a molecule to absorb IR radiations?
 - (d) Write the basic principle of molecular vibrations.

UNIT-II


3. (a) Explain fluorescence and phosphorescence with the help of Jablonski's diagram.

6

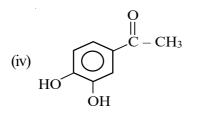
1 2

4

(b) Calculate the λ_{max} of the following compounds:

- 4. (a) How will you distinguish between cis and trans 1,3,5 -hexatriene by UV spectroscopy? 2
 - (b) There is no absorption due to $n \rightarrow \sigma^*$ transition in the spectrum of trimethyl amine in acidic solution. Explain. 2

 $2 \times 4 = 8$


2

5

- (c) Why amines absorb at higher wavelength in UV spectrum in comparison to alcohols?
- (d) Calculate the λ_{max} of the following compounds: $2 \times 4=8$

(i)
$$\bigcirc$$
 = CH – CH = CH₂

(iii)
$$CH_3 - C = CH - CH = CH - C - CH_3$$

 $\downarrow C_2H_5$ O

UNIT-III

5. (a) Write the basic principles of nuclear magnetic resonance spectroscopy.

- (b) Write short notes on the following:
 - (i) Chemical shift in NMR
 - (ii) Spin-spin coupling
- (c) An organic compound with a molecular formula $C_6H_{12}O_2$ gave the following NMR data
 - (i) Singlet, $\delta = 1.1$ (6H) (ii) Singlet, $\delta = 2.1$ (3H)
 - (iii) Singlet, $\delta = 2.6$ (2H) (iv) Singlet, $\delta = 3.9$ (1H)

Propose a structure consistent with the given data. Assign suitable structure to this compound with reason. 4

- 6. (a) An organic compound contains 66.6% carbon, 11.1% hydrogen. In UV, it gave a characteristic band at 275 mµ ϵ_{max} 17. In infrared bands are formed at 2941-2857(m), 1715(s) and 1460 cm⁻¹. In NMR three signals appear at 7.52 τ quartet (2H), 7.88 τ singlet (3H), and 8.93 τ triplet (3H). Determine the structural formula of the compound.
 - (b) Predict the structure of an organic compound with molecular formula $C_9H_{14}Br$ whose pmr signals are at
 - (i) Multiplate (2.25δ) 2H (ii) A triplet (2.75δ) 2H
 - (iii) A triplet (3.38δ) 2H (iv) A singlet (7.22δ) 5H
 - Assign the structure of the compound.
 - (c) Mention some important characteristics of solvent used in NMR. 2

UNIT-IV

7. (a) Write the number of signals obtained in ¹³C NMR spectrum of 2-bromo butane. (b) 3-hexanol when dehydrated forms a mixture of four unsaturated compounds.

Their ¹³C NMR spectra exhibit the following signals:

- (i) 12.30, 13.50, 23.00, 29.30, 129.70 and 130.70 δ
- (ii) 13.50, 17.20, 22.9, 35.00, 125.00 and 132.00 δ
- (iii) 14.30, 21.00 and 130.00 δ
- (iv) 14.00, 26.00 and 131.00 δ

Analyse the data and assign the structure of four compounds.

2

7

5

(c) How will you distinguish among the carbonyl isomers pertaining to the molecular formula C_4H_8O on the basis of ¹³C NMR spectroscopy?

5

3

- 8. (a) Write the application of UV, IR, NMR and mass spectroscopy for structure elucidation of organic compounds. 7
 - (b) A proton decoupled CMR spectrum of a compound exhibit signals at 26.3δ , 128.2, 128.4, 137.1 and 197.6. Which of the following structures is consistent with the data? 4

(c) Briefly explain the Fourier transform (FT) NMR.

UNIT-V

9.	(a)	Explain Mc-Lafferty rearrangement of mass spectral fragmentation	
		and retro-Diels-Alder reaction with suitable example.	4
	(b)	How would you distinguish among ethylamine, diethyl amine and	
		triethyl amine on the basis of their mass spectral studies?	5
	(c)	How will you account for the appearance of prominent peaks at m/	Z
		31, 42 and 70 in the mass spectrum of n-pentanol.	5
10.	(a)	Determine the structure of the compound whose m/e values in the	
		mass spectrum are 100, 85, 71, 57, 43 (base) and 27.	5
	(b)	Discuss the characteristic features of mass spectra of hydroxyl	
		compounds.	5
	(c)	How would you distinguish the following on the basis of mass	
		spectral analysis?	
		$CH_3 - CH = CH - CH_2 - CH_2 - CH_3$ and	
		$CH_2 = CH - CH_2 - C\tilde{H}_2 - C\tilde{H}_2 - C\tilde{H}_3$	4