2024 B.A./B.Sc. Second Semester GENERIC ELECTIVE – 2 STATISTICS Course Code: STG 2.11 (Introductory Probability)

Total Mark: 70 Time: 3 hours Pass Mark: 28

6

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Explain in detail the scatter diagram.	4
	(b) Obtain the normal equations for estimating a and b from the line of	
	regression $Y = a + bx$.	5
	(c) Show that correlation coefficient lies between -1 and $+1$.	5

2. (a) Write the assumptions of Karl Pearson's correlation coefficient. If Z = aX + bY and *r* is the correlation coefficient between X and Y,

prove that: $\sigma_z^2 = a^2 \sigma_x^2 + b^2 \sigma_y^2 + 2abr \sigma_x \sigma_y$. 2+4=6

(b) Write the properties of regression coefficient and prove any two properties of regression coefficient. 2+3+3=8

UNIT-II

- 3. (a) Derive the correlation coefficients in terms of the total correlation coefficient between the pairs of variables.
 - (b) Give the equations for estimate and residual as given by the plan of regression. 2
 - (c) From the data relating to the yield of dry bark (X_1) , height (X_2) and girth (X_3) for 18 cinchona plants, the following correlation coefficients were obtained: $r_{12} = 0.77$, $r_{13} = 0.72$ and $r_{23} = 0.52$. Find the partial coefficient $r_{12,3}$ and multiple correlation coefficients $R_{1,23}$.

4. (a) Prove that the partial correlation coefficient between X_1 and X_2 is

$$r_{12.3} = \frac{r_{12} - r_{13}r_{23}}{\sqrt{\left(1 - r_{13}^2\right)\left(1 - r_{23}^2\right)}} \,.$$

(b) Show that:
$$1 - R_{1,23}^2 = (1 - r_{12}^2)(1 - r_{13,2}^2)$$
, deduce that: $3 + 2 + 3 = 8$

(i)
$$R_{1.23}^2 = r_{12}^2 + r_{13}^2$$
, if $r_{23} = 0$

(ii) $1 - R_{1,23}^2 = \frac{(1-\rho)(1+2\rho)}{(1+\rho)}$, provided all coefficient of zero order are equal to ρ .

UNIT-III

- 5. (a) State and prove the addition theorem of probability.
 (b) Define continuous distribution function. Write any of its four properties.
 4
 - (c) A variable *X* is distributed at random between the values 0 and 4 and its probability density function is given by $f(x) = kx^3(4-x)^2$. Find the value of *k*, the mean and standard deviation of the distribution. 6
- 6. (a) What is the expectation of the number of failures preceding the first success in an infinite series of independent trials with constant probability *p* of success in each trials?
 - (b) State and prove the weak law of large numbers.
 - (c) For the joint probability distribution of two random variables X and Y given below: $2\frac{1}{2} \times 2=5$

5

<i>Y</i> ↓ <i>X</i> →	1	2	3
1	$\frac{5}{27}$	$\frac{4}{27}$	$\frac{2}{27}$
2	$\frac{1}{27}$	$\frac{3}{27}$	$\frac{3}{27}$
3	$\frac{3}{27}$	$\frac{4}{27}$	$\frac{2}{27}$

Find:

- (i) Marginal distribution of X and Y
- (ii) The conditional probability distribution X given Y=1

UNIT-IV

7.	(a)	Define binomial distribution. Derive the theorem for the additive	
		property of binomial distribution.	5
	(b)	If 5 cards are drawn from a pack of 52 playing cards, what is the	
		probability that 3 will be hearts?	3
	(c)	Write any two physical condition of binomial distribution.	2
	(d)	A discrete random variable which follows a hypergeometric	
		distribution with probability mass function $p(X=k) = h(k; N, M, n)$).
		Find the variance of this distribution.	4
8.	(a)	Define Poisson distribution. State and prove the additive property of	of
		Poisson distribution. 1+4=	=5
	(b)	Deduce the formula for skewness and kurtosis of Poisson	
		distribution. 11/2+11/2=	=3
	(c)	Find the first and second moments of geometric distribution. $3+3=$	=6

UNIT-V

- 9. (a) Define normal distribution. For a normal distribution, prove that it's mean is equal to median i.e. mean = median = μ . 1+6=7
 - (b) Let $X \sim U(a,b)$. Then its probability density function is given by

$$f(x) = \frac{1}{b-a}; a < x < b$$
. Find the first two moment's i.e. μ'_1 and
$$\mu_2.$$
 $3^{1/2}+3^{1/2}=7$

10. (a) Write the probability density function of exponential distribution. For an exponential distribution, prove that $E(X) = \frac{1}{\lambda}$ and

$$Var(X) = \frac{1}{\lambda^2}.$$
 1+6=7

- (b) Derive the theorem for mean deviation about mean of uniform distribution.
- (c) For a normal distribution, if $X \sim N(\mu, \sigma^2)$. Then prove that the standard normal variate Z is given by $Z \sim N(0,1)$.

3