2024 B.A/B.Sc. Sixth Semester CORE – 13 STATISTICS Course Code: STC 6.11 (Design of Experiments)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) What do you understand by experimental design? Explain the term 'experiment' in an experimental design. 3+2=5
 - (b) Describe the three fundamental principles of design of experiment. 9
- 2. (a) What is Latin square design? Give the layout and analysis of a Latin square design. 2+8=10
 - (b) Draw the analysis of variance table of a randomised block design (RBD). How would you test the critical difference between treatment variations in an RBD?

UNIT-II

3.	(a)	What is the use of missing plot technique? Explain how this method	
		can be used to estimate the missing yield of two plots in case of	ofa
		randomized block design.	2+6=8
	(b)	Describe a split plot design. Give some situations in which the	use of
		split plot design may be recommended.	6
4.	(a)	Discuss the advantages and disadvantages of split plot design.	8
	(b)	In your own words, differentiate between the use of a split plo	ot
		design and RBD in experimental design.	6

UNIT-III

5.	(a) What is BIBD? Give the statistical analysis of a BIBD.	2+6=8
	(b) Prove the relation $\lambda(a-1) = r(k-1)$.	6

^{6. (}a) Discuss the efficiency of balanced incomplete block design relative to randomised block design. 7

 $3^{1/2} \times 2 = 7$

- (b) Define the following terms:
 - (i) Residual derived BIBD
 - (ii) Dual BIBD

UNIT-IV

- 7. (a) Define treatment contrast for a factorial design.
 (b) How many treatment combinations are there in 2² factorial design? Write along with examples. Also give the ANOVA table for 2² factorial design.
 (c) Define 2³ factorial design. Give the Yate's table for 2³ factorial design.
 3+4=7
- 8. (a) Give the statistical analysis for 2^2 factorial experiment. Also explain the conclusions to be made for calculated *F* and tabulated *F* at á level of significance. 6+2=8
 - (b) What is the total number of 2nd and 3rd order interaction effect in 2⁶ factorial experiment?
 3
 - (c) Explain in detail the general term used in 2^n factorial experiment. 3

UNIT-V

- 9. (a) Write a short note on confounding in factorial experiment. Explain in detail confounding of single effect in 2³ design. 2+6=8
 - (b) Mention the two types of confounding. Explain in detail the process of confounding subgroups. 1+3=4
 - (c) Prepare the ANOVA table for a completely confounded 2^3 design. 2

- 10. (a) Discuss in detail how confounding increases the precision of the design.
 - (b) How do we confound several effects simultaneously for a 2⁴ design? Prove that block contrast (I+II) \approx (III+IV) represents the interaction effect CD. 3+5=8

4

2

(c) Define generalized interaction in confounding.