2024 B.A./B.Sc. Fourth Semester CORE – 8 STATISTICS Course Code: STC 4.11 (Statistical Inference)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1. (a) What do you understand by parameter space? In particular, discuss the requirements of consistency and unbiasedness of an estimate.

1+3=4

- (b) Let *X* be distributed in the Poisson form with parameter Θ . Show that only unbiased estimator of $\exp\{-(k+1)\theta\}, k > 0$, is $T(X) = (-K)^x$ so that T(x) > 0 if *x* is even and T(x) < 0 if *x* is odd.
 - 3

4

- (c) If T_1 and T_2 are two unbiased estimators of $\gamma(\theta)$, having the same variance and ρ is the correlation between them, then show that $\rho \ge 2e 1$, where *e* is the efficiency of each estimator. 4
- (d) Let $X_1, X_2, ..., X_n$ be a random sample from a population with p.d.f: $f(x, \theta) = \theta x^{\theta - 1} : 0 < x < 1, \theta > 0.$ 3
- 2. (a) Define the minimum variance unbiased estimator. 2
 - (b) Prove the Invariance property of a consistent estimators.
 - (c) A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size 5 is drawn from a normal population with unknown mean μ . Consider the following estimators to estimate μ :

(i)
$$t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$

(ii)
$$t_2 = \frac{X_1 + X_2}{2} + X_3$$

(iii) $t_3 = \frac{2X_1 + X_2 + \lambda X_3}{3}$

Where λ is such that t_3 is an unbiased estimator of μ . Find λ . Are t_1 and t_2 unbiased? State giving reasons, the estimator which is best 5 among t_1, t_2 and t_3 .

(b) Let $x_1, x_2, ..., x_n$ be a random sample from a uniform population on $[0, \theta]$. Find a sufficient estimator for θ . 3

UNIT-II

3. (a) Let $X_1, X_2, ..., X_n$ be a set of random variable taken from a population described by the joint probability function $f_{\theta}(x_1, x_2, ..., x_n)$ where $\theta \in \Theta$. Let $T = t(X_1, X_2, ..., X_n)$ be an unbiased estimator of θ , say $\tau(\theta)$. Then prove that,

$$Var(t) \ge \frac{\{\tau'(\theta)\}^2}{E_{\theta}\left\{\frac{\delta^2}{\delta\theta^2}\log f_{\theta}(x_1, x_2, ..., x_n)\right\}}$$

$$7$$

(b) For an interval estimation, construct a general term for confidence limit and confidence interval at 99% level. For a large sample from a normal distribution with mean μ and standard deviation σ and

$$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$
⁷

4. (a) A random sample
$$(X_1, X_2, ..., X_n)$$
 is taken from a normal distribution
 $N(0, \sigma^2)$. Examine if $\sum_{i=1}^n \frac{x_i^2}{n}$ is an MVB estimator for σ^2 . 5
(b) Prove that $E[\emptyset(X)] = E(Y) = \mu$. 2

(b) Prove that $E[\mathcal{O}(X)] = E(Y) = \mu$.

(c) A random sample of 85 observations has mean 20 and a standard deviation 3.5. Construct 99% confidence interval for the population mean.

UNIT-III

- 5. (a) In a random sampling from normal population $N(\mu, \sigma^2)$, find the M.L.E for $3 \times 2=6$
 - (i) μ when σ^2 is known
 - (ii) σ^2 when μ is known
 - (b) Explain the method of maximum chi-square (χ^2) . 4
 - (c) Present the general structure of Baye's estimators and give its two properties. 2+2=4
- 6. (a) Define likelihood function. What properties of estimators are being usually held by maximum likelihood estimators? 1+3=4
 - (b) For two Poisson distribution:

$$p(x) = P(X = x) = \frac{1}{2} \cdot \frac{e^{-m_1} \cdot m_1^x}{x!} + \frac{1}{2} \cdot \frac{e^{-m_2} \cdot m_2^x}{x!} \forall x = 0, 1, 2, \dots$$

Show that the estimate for m_1 and m_2 by the method of moments are:

$$\mu_1' \pm \sqrt{\mu_2' + \mu_1' + \mu_1'^2}$$
. 6

(c) Write the properties of the estimates obtained by the method of minimum chi-square. Compare the method of minimum chi-square with maximum likelihood estimation.

UNIT-IV

- 7. (a) Write a note on the following:
 - (i) Critical region
 - (ii) Power of the test
 - (iii) Two types of errors
 - (b) If x≥1 is the critical region for testing H₀: θ = 2 against the alternative θ = 1, on the basis of the single observation from the population: f(x, θ) = θ exp(-θx); 0 ≤ x ≤ ∞. Obtain the value of type I and type II errors.
 - (c) Explain the test for the mean of a normal population.

1+1+2=4

5 5

- 8. (a) Define uniformly most powerful test (UMP).
 - (b) State Neyman Pearson Lemma. Obtain the region for testing $\theta = \theta_0$ against $\theta = \theta_1 > \theta_0$ and $\theta = \theta_1 < \theta_0$, in the case of a normal population with mean θ and variance σ^2 where σ^2 is known using Neyman Pearson Lemma. 2+6=8

2

(c) Define parameter space. Examine whether a best critical region exists for testing the null hypothesis $H_0: \theta = \theta_0$ against the alternative

 $H_1: \theta > \theta_0$ for the parameter θ of the distribution: 1+3=4

$$f(x,\theta) = \frac{1+\theta}{(x+\theta)^2}, 1 \le x \le \infty.$$

UNIT-V

9.	(a)	Write the advantages and disadvantages of non-parametric method. 2+2=	
	(b)	Stating the underlying assumptions and the null hypothesis, develop Kruskal Wallis test.	5
	(c)	Explain test for randomness and empirical distribution function. $2+3=$	=5
10.	(b)	Distinguish between parametric and non-parametric tests. How can one use Mann-Whitney test for two sample problem? Explain sign test for one sample and give some of its uses.	4 5 5