2024

B.A./B.Sc. Fourth Semester GENERIC ELECTIVE – 4 PHYSICS Course Code: PHG 4.11

(Elements of Modern Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Explain in short Planck's quantum theory.	3
	(b) What is Compton effect? Derive an expression for the change in	
	wavelength of scattered photon in Compton effect. 1+6	=7
	(c) X-rays of wavelength 10Å are scattered from a target.	4
	(i) Find the wavelength of the X-rays scattered through 45° .	
	(ii) Find the maximum wavelength present in the scattered X-rays.	
2.	(a) Describe Davisson and Germer's experiment for the study of	
	diffraction of electrons.	4
	(b) State the postulates of Bohr's theory of the hydrogen atom. Derive	e

(b) State the postulates of Bohr's theory of the hydrogen atom. Derive the expressions for radius of Bohr orbit and energy of the electron in the n^{th} orbit. Draw the energy level diagram of the hydrogen atom and hence explain the various spectral series of this atom.

2+4+4=10

UNIT-II

3.	(a)	Derive the time-independent Schrodinger's wave equation for	a
		particle in three dimensions.	12
	(b)	What is the physical significance of a wave function?	2
4.	(a)	Explain normalization of a wave function.	2
	(b)	Using time dependent form of the wave function deduce opera	tors
		for momentum and energy.	3+3=6

(c) Prove the relation $\frac{\partial P}{\partial t} + \nabla J = 0$ where *J* is probability current

density and *P* the probability density.

(d) A particle is in motion along a line between x = 0 and x = a with zero potential energy and at points for which x < 0 and x > a the potential energy is infinite. The wave function for a particle in the nth state is given by:

 $\Psi_n = A \sin \frac{n\pi x}{a}$

Find the expression for the normalized wave function.

3

4

3

3

UNIT-III

- 5. (a) A particle of mass *m* is confined to a one-dimensional closed box of infinite rigid walls at x = 0 and x = L. Assuming that it does not lose energy in collisions with the walls. Obtain an expression for the normalized wave function and calculate the values of energy of the particle in a one-dimensional box. 10
 - (b) Find the lowest energy of an electron confined to move in a one-dimensional potential box of length 1 Å.
- 6. (a) What is potential step? Find the reflection and transmission co-efficient for potential step of the form $E < V_{o}$. Show that there is a finite probability of locating the particle in the region which is forbidden classically. 12
 - (b) What is quantum mechanical tunnelling? Give one example. 2

UNIT-IV

- (a) State Heisenberg uncertainty principle for measurement of position and momentum. Using gamma ray microscope thought experiment, obtain an expression for uncertainty relation. Discuss its physical importance. 2+4+2=8
 - (b) Explain the concept of energy and time uncertainty.
 - (c) Calculate the uncertainty in the position of an electron moving with a velocity 300 m/s, with uncertainty 0.001%.

8.	(a)	Obtain the Heisenberg's uncertainty principle from de Broglie w	vave
		concept.	5
	(b)	Explain non-existence of free electrons in the nucleus.	3
	(c)	Calculate the uncertainty in the momentum and velocity of an el	lectron
		confined in a box of length 1 Å.	3
	(d)	Explain any two properties of a nucleus.	3

UNIT-V

9.	(a)	Discuss the nature of nuclear force. Plot the N-Z graph for stable
		nuclei and explain nuclear stability. $3+3=6$
	(b)	Write the semi empirical mass formula for a nucleus of mass number
		A, containing Z protons and N neutrons explaining each term used in
		the expression. 5
	(c)	Calculate the half-life period of radium if 1 gram of radium is reduced
		by 2.1 mg in 5 years by α decay. 3
10.	(a)	Explain the existence of continuous spectrum of β particles. Show
		how neutrino hypothesis accounts for continuous β -ray spectrum.
		3+3=6
	(b)	Calculate the kinetic energy of the alpha particle emitted by the
		decay of $^{222}_{86}$ Rn . Given mass of $^{222}_{86}$ Rn = 222.017531 u. Mass of
		polonium nucleus =218.008930 u and mass of alpha particle =
		4.00260 u. 3
	(c)	Write short notes on the following: $2+3=5$
		(i) Electron capture

(ii) Internal conversion