2024 B.A/B.Sc. Fourth Semester CORE – 8 PHYSICS Course Code: PHC 4.11 (Mathematical Physics - III)

Total Mark: 70 Time: 3 hours Pass Mark: 28

6

8

4

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Find the value of $(1+i)^{1/5}$. (b) Solve the equation with the help of De Moivre's theorem $x^7 - 1 = 0$. (c) If $2\cos\theta = x + \frac{1}{x}$ and $2\cos\phi = y + \frac{1}{y}$, then prove that $x^p \cdot y^q + \frac{1}{x^p \cdot y^q} = 2\cos(p\theta + q\phi)$. 5
- 2. (a) Show that the real and imaginary parts of the function $w = \log z$ satisfy the Cauchy-Riemann equations when z is not zero. Find its derivative.
 - (b) Which of the following function is analytic?
 - (i) $x^2 + iy^2$ (ii) $2xy + i(x^2 y^2)$

UNIT-II

3. (a) Evaluate
$$\int_{0}^{1+i} (x^2 - iy) dz$$
, along the path

(i) y = x

- (ii) $y = x^2$ 6
- (b) Expand the following function in Taylor series e^z about a.

- (c) Using Cauchy integral formula to calculate $\int_{0}^{1} \frac{2z+1}{z^2+z} dz$, where C is circle $|z| = \frac{1}{2}$. 4
- (a) Determine the poles and residue of the function $f(z) = \cot z$. 4 4.
 - (b) Using Residue theorem, evaluate $\oint \frac{z^2 + 1}{z^2 1} dz$, where *C* is the circle

$$|z| = \frac{3}{2}.$$

(c) Evaluate
$$\int_{0}^{2\pi} \frac{d\theta}{a+b\sin\theta}$$
 if $a > |b|$. 6

UNIT-III

(a) Find the Fourier sine integral for $f(x) = e^{-\beta x} (\beta > 0)$. Hence show 5.

that
$$\frac{\pi}{2}e^{-\beta x} = \int_{0}^{\alpha} \frac{\lambda \sin \lambda x}{\beta^{2} + x^{2}} d\lambda$$
 5

- (b) Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, & \text{if } |x| \le 1 \\ 0, & \text{if } |x| > 1 \end{cases}$
- (c) Find the Fourier transform of e^{-ax^2} , where a > 0. 4
- (a) Obtain Fourier cosine transform of $f(x) = 5e^{-2x} + 2e^{-5x}$. 6 6.
 - (b) Show that $F\{f(x-a)\} = e^{isa}F(s)$, if F(x) is complex Fourier transform of f(x).

(c) Show that
$$\int_{-\alpha}^{\alpha} \delta(x) dx = \begin{cases} \frac{1}{2} & \text{if } a > 0\\ -\frac{1}{2} & \text{if } a < 0 \end{cases}$$

3

5

5

UNIT-IV

7. Find the Laplace transforms of

(a)
$$f(t) = \begin{cases} \frac{t}{k}, & \text{when } 0 < t < k \\ 1, & \text{when } t > k \end{cases}$$
 4

(b)
$$f(t) = 4\cosh 2.\sin 4t$$
 4

(c)
$$f(t) = \sin \sqrt{t}$$
, hence find $L\left(\frac{\cos \sqrt{t}}{2\sqrt{t}}\right)$ 6

8. (a) Find the Laplace transform of the periodic function

$$f(t) = \begin{cases} t, & 0 < t < \pi \\ \pi - t, & \pi < t < 2\pi \end{cases}$$
6

(b) Express the following function in terms of unit step functions and find

its Laplace transform:
$$f(t) = \begin{cases} 8, & t < 2 \\ 6, & t \ge 2 \end{cases}$$
 4

(c) Find the inverse Laplace transform of $\frac{s}{4s^2 - 25}$.

UNIT-V

9. (a) Solve $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ for $0 \le x \le \alpha, t > 0$ under the given conditions: 7 (i) u(x,0) = 0 for $x \ge 0$ (ii) $\frac{du(0,t)}{du} = -a$ (constant) (b) Voltage Ee^{-at} is applies at t = 0 to a. Circuit of inductance L and resistance R. Show that the current at time t is $\frac{E}{R-aL}\left(e^{-at}-e^{-\frac{Rt}{L}}\right)$.

10. (a) Using the Laplace transform, find the current i(t) in the LC-circuit. Assuming L=1 henry, C=1 farad, zero initial current and charge on

the capacitor, and $V(t) = \begin{cases} t, & \text{when } 0 < t < 1 \\ 0, & \text{otherwise} \end{cases}$ 6

- (b) Using Laplace transform, find the solution of the initial value problem of: $4 \times 2=8$
 - (i) $y''-4y'+4y=64\sin 2t$, such that, y(0)=0, y'(0)=1
 - (ii) $y''+4y'+4y=6e^{-t}$, such that, y(0) = -2, y'(0) = 8