2024

B.A./B.Sc. Sixth Semester DISCIPLINE SPECIFIC ELECTIVE – 4 MATHEMATICS Course Code: MAD 6.21

(Differential Geometry)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

5

5

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Find the equation of the osculating plane at a general point on the cupid $\overline{r} = (t, t^2, t^3)$ and show that the osculating planes at any three points of the curve meet at a point lying in the plane determined by these three points. 5
 - (b) Show that the necessary and sufficient condition for the curve to be a straight line is that the curvature $\kappa = 0$ at all points of the curve. 4
 - (c) For the curve $x = a(3t t^3)$, $y = 3at^2$, $z = a(3t + t^3)$. Show that

$$\kappa = \tau = \frac{1}{3a(1+t^2)^2}.$$
 5

- 2. (a) State and prove existence theorem.
 - (b) Show that the radius of the spherical curvature of a circular helix is $x = a \cos \theta$, $y = a \sin \theta$, $z = a \theta \cot \alpha$ is equal to the radius of the circular curvature. 4
 - (c) Find the radius and the centre of the sphere of curvature.

UNIT-II

3. (a) Prove that at points common to the surface a(yz + zx + xy) = xyzand a sphere whose center is the origin, the tangent plane to the surface makes intercepts on the axis whose sum is constant.

	(b)	Show that the metric or the first fundamental form is a positive	
		definite quadratic form in du, dv.	3
	(c)	State and prove Rodrigue's formula.	6
4.	(a)	Find the equations giving the principal curvatures.	6
	(b)	Prove that the normals to any surface at consecutive points of one of	of
		its line of curvature intersets. Conversely if the normals at two	
		consecutive points of a curve drawn on a surface intersect then the	
		curve is a line of curvature.	5
	(c)	Find the angle between 2 directions on the surface at the point <i>P</i>	
		having the direction coefficients (l, m) and (l', m')	3

UNIT-III

5.	(a)	State and prove Clairaut's theorem.	5
	(b)	Show that on a right circular cone $x = u$, $y = u$, $z = u \cot \alpha$ the	
		geodesics are given by $u = h \sec(v \sin \alpha + \beta)$ where h, α and β are	e
		constants.	6
	(c)	Prove that if the parametric curves on a surface are orthogonal the curves $v =$ constant will be geodesics provided <i>E</i> is a function of <i>u</i> only and the curve $u =$ constant will be geodesic if <i>G</i> is a function of	f
		v only.	3
6.	(a)	State and prove Gauss Bonnet theorem.	5
	(b)	Prove that the curves of the family $\frac{v^3}{u^2}$ = constant are geodesic on the	ne
			4
	(0)	or else a similarity mapping.	5
		UNIT-IV	
7.	(a)	Prove that the equations of transformation of a mixed tensor posses	s

- (a) Prove that the equations of transformation of a mixed tensor possess the group property.
 (b) Show that any linear combination of the tangen of tan
 - (b) Show that any linear combination of the tensor of the type (r, s) is a tensor of the type (r, s). 4

(c) Show that a second rank covariant tensor of the type (2,0) is expressible as a sum of two tensors, one of which is symmetric and the other is anti-symmetric.

5

5

4

- 8. (a) State and prove Quotient Law.
 - (b) The tensor product of the tensors of the type (r, s) and (r', s') is a tensor of the type (r+r', s+s').
 - (c) If the tensors a_{ij} and g_{ij} are symmetric and u^i , v^i are contravariant vectors satisfying the equations

 $(a_{ij} - kg_{ij})u^{i} = 0$ $(a_{ij} - k'g_{ij})v^{i} = 0 \text{ with } k \neq k'$ prove that $g_{ij}u^{i}v^{j} = 0, a_{ij}u^{i}v^{j} = 0$

UNIT-V

9.	(a)	Obtain the tensor laws of transformation of Christoffel symbols.	6
	(b)	Find the covariant derivative of a covariant vector.	4
	(c)	Prove that the necessary and sufficient condition that all the	
		Christoffel symbols vanish at a point is that g_{ii} are constant.	4
		9	

- 10. (a) Prove that the necessary and sufficient condition that the curl of a vector field vanishes is that the vector field be gradient. 5
 - (b) If at a specified point, the derivatives of g_{ij} with respect to x^k are all zero, prove that the components of covariant derivatives at that point are the same as ordinary derivatives. 4
 - (c) If ϕ is a scalar function of co-ordinates x^i , then

div grad
$$\phi = \nabla^2 \phi = g^{ij} \left(\frac{\partial^2 \phi}{\partial x^i \partial x^j} - \frac{\partial \phi}{\partial x^l} \begin{cases} l \\ ij \end{cases} \right) = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} (\sqrt{g} g^{ij} \phi_{,j})$$
5