2024

B.A./B.Sc. Sixth Semester DISCIPLINE SPECIFIC ELECTIVE – 3 MATHEMATICS Course Code: MAD 6.11

(Theory of Equations)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Express $x^5 + 5x^3 + 3x = 0$ as a polynomial in $(x - 1)$. Also, find $f(x+1)$.	4
	(b) Prove that every equation of degree n has exactly n roots.	6
	(c) Find the equation whose roots are $4 - \sqrt{2}, 2 + i\sqrt{3}$.	4
2.	(a) Apply Descartes' rule of signs to discuss the nature of the roots of the equation $3x^4 + 12x^2 + 5x - 4 = 0$.	4
	(b) Show that the roots of the equation $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} = \frac{1}{x}$,	
	where $a > b > c > 0$ are real.	5
	(c) Find the condition that the roots $\alpha, \beta, \gamma, \delta$ of the biquadratic	
	$x^4 + px^3 + qx^2 + rx + s = 0$ should have its roots connected by the	
	relation $\beta + \gamma = \alpha + \delta$.	5

UNIT-II

3. (a) If *a*, *b*, *c* be the roots of the equation $x^3 - px^2 + qx - r = 0$, find the value of: 4

(i)
$$\sum \left(\frac{b}{c} + \frac{c}{b}\right)$$
 (ii) $\sum a^2 b^2$

(b) Remove the fractional coefficient of the equation

$$x^{3} - \frac{5}{2}x^{2} - \frac{7}{18}x + \frac{1}{108} = 0.$$
 4

- (c) Find the equation whose roots are the cubes of the roots of the equation $x^3 + ax^2 + bx + c = 0$.
- 4. (a) Remove the third term of the equation $x^4 4x^3 18x^2 3x + 2 = 0$ and solve the equation. 4
 - (b) If α , β , γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then: 6

(i) Form the equation whose roots are
$$\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}, \gamma + \frac{1}{\gamma}$$

(ii) Find the value
$$\left(\frac{1}{\beta} + \frac{1}{\gamma} - \frac{1}{\alpha}\right) \times \left(\frac{1}{\gamma} + \frac{1}{\alpha} - \frac{1}{\beta}\right) \times \left(\frac{1}{\alpha} + \frac{1}{\beta} - \frac{1}{\gamma}\right)$$

(c) If α be an imaginary root of $x^n - 1$, where *n* is a prime number, prove that $(1 - \alpha)(1 - \alpha^2) \dots \dots (1 - \alpha^{n-1}) = n$. 4

UNIT-III

(a) Solve $x^3 + 6x^2 - 12x + 32 = 0$ by Cardan's method. (b) Show that $2 \sin 10^\circ$, $2 \sin 50^\circ$, $-2 \sin 70^\circ$ are the roots of the	5
equation $x^3 - 3x + 1 = 0$.	5
(c) Find the Euler's cubic of the equation $x^4 - 2x^2 + 8x - 3 = 0$ and	
hence solve it.	4
(a) Apply Descartes' method to solve the biquadratic equation $x^4 + 6x^3 + 14x^2 + 22x + 5 = 0$	7
	/
	7
	 (b) Show that 2 sin 10°, 2 sin 50°, -2 sin 70° are the roots of the equation x³ - 3x + 1 = 0. (c) Find the Euler's cubic of the equation x⁴ - 2x² + 8x - 3 = 0 and hence solve it.

7

6

UNIT-IV

7. (a) If $\alpha, \beta, \gamma, \delta$ be the roots of the equation $x^4 + px^2 + qx + r = 0$, then show that $\sum \alpha^{6} = 6 pr + 3q^{2} - 2p^{3}$ and $\sum \alpha^{7} = -7q(p^{2} - r)$. 6

- (b) Prove that if α₁ be the root of the equation f(x) = 0 of multiplicity r, then α₁ is a root of the equation f'(x) = 0 of multiplicity (r-1), where f'(x) is the first derived function of f(x).
 (c) Find the multiple roots of the equation x⁴ + 3x³ 7x² 15x + 18 = 0.
- 8. (a) Show that (-8) is a superior limit of the negative roots of the equation $x^4 - 2x^3 - 13x^2 + 38x - 24 = 0.$ 4
 - (b) Find the consecutive integers which contain the real roots of the equation $x^4 x^3 4x^2 + 4x + 1 = 0.$ 5
 - (c) Analyze the characters of the roots of the equation $x^5 + x^4 + x^2 - 25x - 36 = 0.$

5

UNIT-V

9.	(a)	Use Sturm's theorem to show that the equation $x^3 - 7x + 7 = 0$ has	;
		one root between -4 and -3 and two roots between 1 and 2.	5
	(b)	Prove by Sturm's method that the equation	
		$x^4 - 6x^3 + 13x^2 - 12x + 4 = 0$ has two pairs of equal roots.	5
	(c)	Find the condition that the roots of the equation $ax^2 + 2bx + c = 0$	
		should be real.	4
10.	(a)	Using Newton's method of approximation, find the positive roots of the equation $x^3 + x^2 + x - 100 = 0$ correct to two places of	ſ
		decimals.	4
	(b)	Find by Horner's method the real roots of the equation	
		$x^3 + 3x - 7 = 0$ correct to two places of decimal.	5
	(c)	Find the positive roots of the equation $x^4 - 12x + 7$ correct to 7	
		places of decimals.	5