2024

B.A./B.Sc. Fourth Semester CORE – 10 MATHEMATICS Course Code: MAC 4.31 (Ring Theory & Linear Algebra - I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Define the center of a ring. Prove that the center of a ring is a subring.	-4=5	
	(b)	Let R be a commutative ring with characteristic p . Show that		
		$(x+y)^p = x^p + y^p, \forall x, y \in R$	5	
	(c)	Show that the ring of integers modulo p , \mathbb{Z}_p , is a field.	4	
2.	(a)	Let <i>a</i> and <i>b</i> belong to a ring <i>R</i> and let <i>m</i> and <i>n</i> be integers. Prove that $m \cdot (ab) = (m \cdot a)b = a(m \cdot b)$ and $(m \cdot a)(n \cdot b) = (mn) \cdot (ab)$		
	(b)	Let R be a ring with unity 1. Show that if 1 has infinite order under addition, then the characteristic of R is 0 and if 1 has order n under n under n under n addition.	er	
	(c)	addition, then the characteristic of R is n . Define a nilpotent element. If R is a ring with unity 1 and a is a	5	
	(0)	nilpotent element of R , then prove that $1-a$ is a unit.	4	
		UNIT-II		

3. (a) If A is a subring of a ring R, then prove that the set of cosets{r + A | r ∈ R} is a ring under operations
(s + A) + (t + A) = s + t + A and (s + A)(t + A) = st + A if and only if A is an ideal of R.

(b) If R is a finite commutative ring with unity, prove that every prime ideal of R is a maximal ideal of R. Comment on the converse too. 5

(c) Let
$$R = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} | a, b, d \in \mathbb{Z} \right\}$$
 and

$$S = \left\{ \begin{bmatrix} r & s \\ 0 & t \end{bmatrix} | r, s, t \in \mathbb{Z}, s \text{ is even} \right\}.$$
 If S is an ideal of R, what can you say about r and s?

you say about *r* and *s*?

- 4. (a) If A and B are ideals of a ring, show that the product of A and B is also an ideal. 5
 - (b) Show that $\mathbb{R}[x]/\langle x^2+1\rangle$ is a field.
 - (c) Let R be a commutative ring and let A be any subset of R. Show that the annihilator of A is an ideal. 4

5

UNIT-III

UNIT-IV

- 7. (a) Let S be a linearly independent subset of a vector space V and let x be an element of V that is not in S. Show that $S \cup \{x\}$ is linearly dependent if and only if $x \in \text{Span}(S)$. 5
 - (b) Determine if the following subsets of the vector space ℝ³ for subspaces of ℝ³
 2¹/₂×2=5

(i)
$$V = \{(a, 2a, 3a) | a \in \mathbb{R} \}$$

(ii)
$$W = \{(a, a^2, b) | a, b \in \mathbb{R} \}$$

- (c) Find a number *t* such that (3, 1, 4), (2, -3, 5), (5, 9, t) is not linearly independent in \mathbb{R}^3 .
- 8. (a) Suppose x_1, x_2, x_3, x_4 are linearly independent in V. Prove that the list $x_1 x_2, x_2 x_3, x_3 x_4, x_4$ is also linearly independent. 5
 - (b) Let V be the vector space of all 2×2 matrices over the field F. Let W

be the set of matrices of the form
$$\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$$
. Prove that W is a

subspace of V.

(c) If *V* is a finitely generated vector space, then prove that every basis of *V* has the same number of elements. 4

5

5

4

UNIT-V

- 9. (a) State and prove the second isomorphism theorem of linear algebra. 5
 - (b) Let *T* be a linear operator on R² defined by *T*(*a*, *b*) = (3*a* - *b*, *a* + 3*b*) where β = {(1, 1), (1, -1)} and β' = {(2, 4), (3, 1)} are the ordered basis of R².
 Find [T]_{β'} = Q⁻¹[T]_βQ where Q is the change of coordinate matrix from β' to β coordinates.
 - (c) Let *T* be a linear transformation from *V* to *W*. Prove that *T* is injective if and only if $N(T) = \{0\}$.

-3-

- 10. (a) If $e_1 = (1, 0)$ and $e_2 = (0, 1)$. Let $B = \{e_1, e_2\}$ and $C = \{e_1 + e_2, e_1 - e_2\}$ be two ordered bases of \mathbb{R}^2 . Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ as T(x, y) = (x + y, x - 2y): 2+3=5 (i) Determine the matrix of *T* with respect to the basis *B*. (ii) Determine the matrix of *T* with respect to the basis *C*. (b) Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by
 - (b) Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^{c} \to \mathbb{R}^{c}$ by T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz). Show that T is linear if and only if b = c = 0. 5
 - (c) Let V and W be vector spaces and $T: V \rightarrow W$ be linear. Prove that N(T) and R(T) are subspaces of V and W, respectively. 4