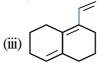
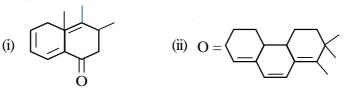

2024 B.A./B.Sc. Sixth Semester CORE – 14 CHEMISTRY Course Code: CHC 6.21 (Organic Chemistry - V)

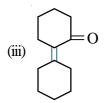

Total Mark: 70 Time: 3 hours

Answer five questions, taking one from each unit.


UNIT-I

- 1. (a) Write short notes on the following:
 - (i) Chromophores
 - (ii) Auxochromes
 - (b) Calculate the absorption maximum (λ_{max}) of the following compounds based on Woodward's rule. $2 \times 3 = 6$

- (c) Explain the infrared spectroscopy with respect to molecular vibration.
- 2. (a) Calculate the absorption maximum (λ_{max}) of the following compounds based on Woodward's rule. $2 \times 3 = 6$



-1-

Pass Mark: 28

 $2 \times 2 = 4$

4

(b) The force constant for carbon monoxide molecule is 1840 Nm⁻¹. Calculate the vibrational frequency (in cm⁻¹). Given that atomic masses are:

3

5

 ${}^{12}C = 19.9 \times 10^{-27} \text{ kg}, {}^{16}O = 26.6 \times 10^{-27} \text{ kg}.$

(c) Discuss the finger print region in infrared spectroscopy.

UNIT-II

3.	(a)	Define anisotropic effect. Discuss the anisotropic effect on the					
		following:					1+2×3=7
		(i) Alker	nes				
		(ii) Alkyr	nes				
		(iii) Arom	natic con	npounds			
	(b)	Write a no	ote on sp	in-spin	coupling.		3
	(c)	What are	the facto	ors that i	nfluence chem	ical shift? Briefly e	laborate
		any two f	actors.				4
4.	(a)	How man	ny kinds	of NMF	R signals would	d you expect from t	the
		following	compou	inds?			1×4=4
		(i) CH ₃ -	$-CH_2 -$	CH ₃			
		(ii) CH ₂ :	$= CH_2$	5			
		(iii) $CH_3 -$	-CH =	CH ₃			
		(iv) $C_6 H_5$	$-CH_3$				
	(b)	Acompo	und has	a moleci	ular formula C	$L_{10}H_{13}$ Cl. Assign its	structure
		with the h	elp of th				
		Singlet	1.57δ	6H			
		Singlet	3.07δ	2H			
		Singlet	7.27δ	5H			3

- (c) Two isomeric compounds A and B have molecular formula $C_2H_4Cl_2$. Compound *A* gives one NMR signal as a singlet at $\delta = 3.7$ whereas *B* gives two signals, a doublet at $\delta = 2.1$ and a quartet at $\delta = 5.8$. Assign the structure to compound *A* and *B*. 4 3
- (d) Explain shielding and deshielding of protons.

UNIT-III

5.	(a)	Differentiate between aldohexoses and aldopentose.	3
	(b)	Define anomers and epimers with suitable examples.	3
	(c)	Give the structure elucidation of maltose.	4
	(d)	What are polysaccharide? Write a note on cellulose.	4
6.	(a)	What do you understand by α - and β -glycosidic linkage?	3
	(b)	With chemical reactions, explain what happens when	2+2=4
		(i) sucrose is hydrolysed with dilute acids.	
		(ii) fructose is heated with conc. hydrochloric acid.	
	(c)	Describe Ruff's degradation of an aldohexose to aldopentose.	. 4
	(d)	Give the evidence in support of the pyranose ring structure of	
		glucose.	3

UNIT-IV

7.	(a) Give the classification of dyes based on their application.	4
	(b) Write the synthesis and uses of the following dyes:	3×2=6
	(i) Malachite green	
	(ii) Congo red	
	(c) Briefly outline the structure elucidation of indigotin.	4
8.	(a) Discuss the electronic concept of colour and constitution.	3
	(b) What are natural dyes? Give the synthesis of indigo.	4
	(c) Differentiate between mordant dye and vat dyes.	3
	(d) Give the synthesis and uses of fluorescein dye.	4

UNIT-V

9.	(a)	What are biodegradable polymers? Give example.	2
· ·	()	filmente elle de Brunnelle per filmers e elle e ellemente pres	-

) Discuss the Ziegler-Natta polymerization of alkene. What are their			
advantages over free radical polymerization? 3+2	-		
(c) Give the preparation of the following with chemical reaction: 2×2	=4		
(i) Phenol-formaldehyde resin			
(ii) Chloroprene			
(d) Write the mechanism for cationic polymerization reaction.	3		
10. (a) What is natural rubber? Give its chemical formula. What is the			
significance of vulcanization of natural rubber? 1+1+2	=4		
(b) Give the preparation of the following with chemical reaction: 2×2	=4		
(i) Polyester			
(ii) PVC			
(c) Write a note on polydispersity index.	2		
	-		
(d) Equal number of molecules with $M_1 = 10,000$ and $M_2 = 100,000$ at	are		
mixed. Calculate weight average and number average molecular			
mass.	4		