Pass Mark: 28

1+1+4=6

2024

B.A./B.Sc.

Sixth Semester

CORE - 13

CHEMISTRY

Course Code: CHC 6.11 (Inorganic Chemistry - IV)

Total Mark: 70

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

1. (a) Explain dihapto, tri hapto, and tetra hapto ligands with examples.

		, -	$2\times3=6$
	(b)	Determine whether the following carbonyls follow the 18e rule	
		or not: $1\frac{1}{2}$	⁄2×4=6
		(i) $Mn_2(CO)_{10}$	
		(ii) $\operatorname{Fe}_{2}(\operatorname{CO})_{q}^{1}$	
		$(iii) Cr(CO)_6$	
		(iv) Ni(CO) ₄	
	(c)	Explain the structure of Fe(CO) ₅ according to VBT.	2
2.	(a)	Draw the MO energy level diagram of carbon monoxide (CO)	by
		Coulson.	4
	(b)	Give one method of preparation of Fe ₂ (CO) ₉ . Explain its struct	ture by
		VBT.	2+2=4

UNIT-II

mention its characteristics.

(c) What are ionic organometallic compounds? Give two examples and

- 3. (a) Discuss in detail the alkene polymerization by Ziegler-Natta catalyst.
 4
 (b) Explain the Schlenk equilibrium.
 - (c) Discuss in detail bonding in trialkyl aluminium compound.

4.	(a) Discuss the bonding in Zeise's salt.
	(b) Give the commercial method of preparation of ferrocene. Give the
	alkylation and acetylation reactions of ferrocene. 2+4=6
	(c) Give reasons why is ferrocene more reactive than benzene.
	UNIT-III
5.	(a) Give the comparison between homogeneous and heterogeneous
	catalysts. 4
	(b) Write short notes on the following: $2\times 2=4$
	(i) Insertion reactions
	(ii) Oxidative addition reactions
	(c) Discuss the industrial process and mechanism of Monsanto acetic
	acid synthesis.
6.	(a) What are the disadvantages of oxo-process using Co ₂ (CO) ₈ as
•	catalyst?
	(b) Write short notes on the following: $2 \times 2 = 4$
	(i) Ligand coordination
	(ii) Coordinative unsaturation
	(c) Discuss the industrial process and mechanism of synthesis gas by
	metal carbonyl complexes.
	metal carbonyl complexes.
	UNIT-IV
7.	(a) What are labile and inert complexes? Explain with suitable examples. $2+2=4$
	(b) Discuss the factors affecting the stability of complexes in solutions
	with reference to basic nature of ligands and entropy change.
	2+2=4
	(c) Explain with chemical equation, rate of aquation of
	Cis[Co(en) ₂ (OH)Cl] ⁺ is much faster than that of
	trans[$Co(en)_2(OH)Cl$] ⁺ .
8.	(a) Explain the type of intermediate form in S_N^2 mechanism in octahedral
	complexes. 4

(b) What is acid hydrolysis? Discuss acid hydrolysis in octahedral complexes. 1+3=4(c) What is CFAE? On the basis of CFT, discuss the cause of lability and inertness of octahedral complexes in $S_N 1$ and $S_N 2$ mechanism. 1+5=6**UNIT-V** 9. (a) With chemical reaction, mention the three ways to bring about the substitution reaction in square planar complexes. 3 (b) Discuss any two evidence to support that substitution reaction in square planar complexes should proceed through S_N2 mechanism. $2\frac{1}{2} \times 2 = 5$ (c) What is trans effect? Explain the pi-bonding theory of trans effect. 1+5=610. (a) Discuss the four factors which determine the lability of complexes formed by non-transition elements. 4 (b) Explain the ligand field effects and reaction rates in octahedral 5 complexes. (c) Discuss how 'trans effect', affect the substitution reaction in square 5 planar complex.