2024 B.A./B.Sc. Fourth Semester CORE – 10 CHEMISTRY Course Code: CHC 4.31 (Physical Chemistry - IV)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Discuss in detail the Debye-Hückel theory of strong electrolytes.	6
	(b)	Explain the Ostwald's law. Write its uses and limitation.	5
	(c)	Calculate the molar conductance at infinite dilution of an aqueous	
		solution of NaCl at room temperature, given that mobilities of $Na^{\scriptscriptstyle +}$	
		and Cl ⁻ ions at this temperature are 4.26×10^{-8} and	
		$6.80 \times 10^{-8} m^2 V^{-1} s^{-1}$, respectively.	3
2.	(a)	How does the equivalent conductivity of electrolytes vary upon	
		dilution?	4
	(b)	Explain with a neat diagram the moving boundary method for	
		determination of transport number of ions.	5
	(c)	Molar ionic conductance at infinite dilution of K^+ and Br^- ions are	
		73.5 and 78.4 Scm ² mol ⁻¹ respectively. Calculate their transport	
		number.	3
	(d)	State and illustrate Kohlrausch's law.	2

UNIT-II

3.	(a)	What is the amount of Cl ₂ liberated if 0.1 Faraday of electricity is		
		passed through fused NaČl?	2	
	(b)) Construct a working cell comprising of Ni and Cu electrodes and		
		(i) Give symbolic representation of the cell 2×3	3=6	
		(ii) Calculate E_{cell}^0		
		(iii) Write corresponding cell reaction.		

(c) Can a solution of 1M CuSO₄ be stored in a vessel made of Ni metal? Given that $E_{Ni/Ni^{2+}}^0 = +0.25$ V and $E_{Cu/Cu^{2+}}^0 = -0.34$ V.

3

 $2 \times 3 = 6$

4

- (d) What are reversible and irreversible cells? Give examples. 3
- 4. (a) Write the cell reaction and calculate E^0 for the cell $Zn | Zn^{2+}(1M) | | Fe^{2+}(1M), Fe^{3+}(1M) | Pt.$ Given that $E^0_{Fe^{3+}/Fe^{2+}} = +0.77 V$ and $E^0_{Zn^{2+}/Zn} = -0.76 V.$ 3 (b) Give a comparison between galvanic cells and electrolytic cells. 4
 - (c) Write notes on the following: (i) Corrosion
 (ii) Overvoltage $3\frac{1}{2}\times2=7$

UNIT-III

- 5. (a) Show that:
 - (i) $\begin{bmatrix} \hat{A}, \hat{BC} \end{bmatrix} = \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} \hat{C} + \hat{B} \begin{bmatrix} \hat{A}, \hat{C} \end{bmatrix}$ (ii) $\begin{bmatrix} \hat{A}, \hat{B} + \hat{C} \end{bmatrix} = \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} + \begin{bmatrix} \hat{A}, \hat{C} \end{bmatrix}$ (iii) $\begin{bmatrix} \hat{A}^2, \hat{B} \end{bmatrix} = \hat{A} \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} + \begin{bmatrix} \hat{A}, \hat{B} \end{bmatrix} \hat{A}$
 - (b) Derive an expression for a particle in 1-D box. Calculate the quantization of energy and zero-point energy using the expression. 6
 - (c) Write a note on the most probable distances of electron from the nucleus. 2
- 6. (a) Write a note on setting up of Schrödinger equation in spherical polar coordinates. 7
 - (b) Derive an expression for free particle using Schrödinger equation. 3
 - (c) Discuss the properties of wave functions.

UNIT-IV

7.	(a)	Show how to determine the bond length of a linear triatomic	
		molecule using rotational spectra.	6
	(b)	Mention and explain all types of molecular spectra state and express	5
		Born-Oppenheimer approximation.	5
	(c)	Explain absorption and emission spectroscopy with the help of a near	ıt
		diagram.	3

- 8. (a) Explain the selection rule for rotational spectra.
 - (b) What is the moment of inertia of a diatomic molecule with bond distance equal to 150 pm and reduced mass equal to $1.5 \times 10^{-27} \text{ kg}$.

3

3

 $1 \times 3 = 3$

- (c) Define the following terms:
 - (i) Overtones
 - (ii) Hot bands
 - (iii) Modes of vibration
- (d) How will you determine the bond distances of polyatomic molecules using rotational spectroscopy. 5

UNIT-V

9.	(a)	Describe the temperature method for measurement of dipole momen of a molecule.		
	(b)	Derive the expression for Clausius-Mossotti equation.		
	· /	Which has larger dipole moment? Explain.		
		(i) HF or HCl	(ii) CHBr ₃ or CBr ₄	
			(iv) Phenol or Chlorobenzene	
10.	0. (a) Explain polarization of a molecule in a magnetic field.		in a magnetic field.	4
	(b)	How will you obtain Debye equation using induced polarization and		l
		orientation polarizability?		4
	(c)) Which of the following substances would be expected to behave paramagnetic or diamagnetic and why?		
				4
		(i) N_2O_5	(ii) N_2O_4	
		(iii) NO ₂	(iv) NO	
	(d)	(d) The dipole moment of H_2S is 0.95 D. If the bond angle is 97°,		
		calculate the S-H bond moment.		2