2024 B.A./B.Sc. Second Semester CORE – 4 CHEMISTRY Course Code: CHC 2.21 (Physical Chemistry - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

2

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	With the help of an example, define intensive and extensive of a system. Suggest a method to check whether the gives of a system is extensive or intensive.			
	(b)) Derive an expression of an entropy change for an ideal ga	is when		
		temperature changes from T_1 to T_2 and the volume changes to V_2 .	tes from V_1 5		
	(c) What are state functions and path functions?				
2.	(a)	Deduce a relation between C_p and C_y .	4		
	(b)) Discuss molecular and statistical interpretation of entropy.	3+3=6		
	(c)	Define the following terms:	1×4=4		
		(i) Isothermal process (ii) Adiabatic process			
		(iii) Isochloric process (iv) Isobaric process			
		UNIT–II			
3.	(a)	Discuss how to determine absolute entropy of a substance	eusing		
		Debve T ³ law.	6		

(b) Describe the application of bond energy in determining: $3 \times 2=6$

- (i) Enthalpies of reaction
- (ii) Enthalpies of formation of compound
- (c) Show how to give sign to ΔU (internal energy change) for endothermic and exothermic reactions.

4.	(a)	State and explain Hess's law of constant heat summation. Discuss the
		application of Hess's law for calculating the enthalpies of reactions by
		taking specific example. 6
	(\mathbf{h})	Derive Kirchorff's equation for the effect of temperature on heat of

(b) Derive Kirchorff's equation for the effect of temperature on heat of reaction. 5

3

(c) What is enthalpy of combustion? Why is it dependent upon the physical state of a substance?

UNIT-III

5.	(a)	Establish the relation of Joule Thomson coefficient with other	
		thermodynamic parameters.	5
	(b)	Define chemical potential. Discuss its variation with temperatu	ire and
		pressure.	1+4=5
	(c)	Mention some limitations of the criteria of spontaneity.	4
6.	(a)	Derive an expression for criterion for spontaneity in terms of:(i) Change of enthalpy(ii) Free energy change	3×2=6
	(b)	What are partial molar properties? Derive Gibbs-Duhem equa	ation.
			1+3=4
	(c)	Discuss the change in entropy on mixing ideal gases.	4

UNIT-IV

7.	(a)	Present the concept of fugacity to express the free energy of real	
		gases.	5

- (b) Calculate the free energy change accompanying the compression of 1 mole of a gas at 57°C from 25 to 200 atm. The fugacities of the gas at 57°C may be taken as 23 and 91 atm respectively at pressure of 25 and 200 atom.
- (c) With the help of Le-Chatelier's principle, work out the conditions which would favour the formation of ammonia and nitric oxide in the following reaction.

$$\begin{split} &N_{2}\left(g\right)+3H_{2}\left(g\right)\longleftrightarrow 2NH_{3}\left(g\right); \ \Delta\,H=-99.38 \text{ KJ} \\ &N_{2}\left(g\right)+O_{2}\left(g\right)\longleftrightarrow 2NO\left(g\right); \ \Delta\,H=180.75 \text{ KJ} \end{split}$$

- 8. (a) Thermodynamically derive a relation between Gibb's free energy of reaction and reaction quotient. 6
 - (b) Establish the relation of, effect of mixing on the Gibb's free energy of a binary solutions and its spontaneity.
 - (c) Calculate the standard free energy of formation of $H_2O(l)$

 $\begin{array}{ll} H_{2}(g) + \frac{1}{2}O_{2}(g) \longrightarrow H_{2}O(l) & \Delta H_{f}^{\circ} = -286.2 \text{ KJ} \\ \text{Given: standard entropies of } H_{2}(g), O_{2}(g) \text{ and } H_{2}O(l) \text{ are } 130.60, \\ 205.11 \text{ and } 70.29 \text{ JK}^{-1} \text{ mol}^{-1} \text{ respectively.} \end{array}$

UNIT-V

- 9. (a) State and explain Henry's law. Also mention its limitation. 6
 - (b) What is Vant Hoff factor? With the help of this factor, deduce a relation for degree of association in abnormal solution.
 - (c) Acetic acid associates in benzene to form dimmers 1.65g acetic acid when dissolve in 100g of benzene raised the boiling point by 0.36° C. Calculate the Vant Hoff factor and the degree of association of acetic acid in benzene (Kb =2.57K Kg mol⁻¹). 4

4

 $1 \times 4 = 4$

10. (a) Discuss the free energy change on mixing for an ideal solution. 5

- (b) Using chemical potential derive thermodynamically the depression of freezing point.
- (c) Define the following terms:
 - (i) Normality (ii) Molarity
 - (iii) Molality (iv) Mole fraction