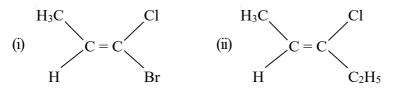
2024 B.A./B.Sc. Second Semester CORE – 3 CHEMISTRY Course Code: CHC 2.11 (Organic Chemistry - I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I


1. (a) Write the IUPAC name of the following compounds: $1 \times 3 = 3$ (i) $H_3C - CH = CH - COOH$ (ii) $H_{2}C = CCl - CH = CH_{2}$ (iii) $\overline{CH}_3 - C(CH_3)_2 - CH_2 - CH_3$ (b) Out of formic acid and acetic acid, which is stronger acid and why? 3 (c) Explain homolytic fission and heterolytic fission with example. 4 (d) Give one example for each of the following species: $1 \times 4 = 4$ (i) Neutral electrophile (ii) Neutral nucleophile (iii) Free radical (iv) Ambident nucleophile 2. (a) Define hybridization. Write the type of hybridization of each of the carbon atoms in the given structure $CH_3 - CH = CH - CH_3$. 2+2=4 3 (b) Benzyl cation is more stable than ethyl cation. Explain. 4 (c) Differentiate between $S_{M}1$ and $S_{M}2$ reaction. (d) Explain addition reaction with example. 3

UNIT-II

3. (a) Assign R, S-configuration to the following compounds: $1 \times 2=2$

- (b) What is geometrical isomerism? What are the conditions for a compound to exhibit geometrical isomerism? 2+2=4
- (c) Write the CIP-rule to assign E-Z notation. Assign E-Z notation to the following compounds: 2+2=4

- (d) Differentiate between relative configuration and absolute configuration.
- 4. (a) Explain Newman and Sawhorse projection formulae giving an example each. 3+3=6
 - (b) How will you resolve a Racemic mixture by biochemical method? 3

4

3

4

- (c) Write short note on syn-anti isomerism.
- (d) Using tartaric acid, show the conversion for Newman (staggered) projection to Fischer projection. 2

UNIT-III

5. (a) Complete the following reactions: $1 \times 2=2$ (i) $CH_3 - CH_2 - CH_2 - OH + Conc. H_2SO_4 \xrightarrow{160^\circ C - 170^\circ C} \rightarrow$

(ii)
$$CH_3 - CH = CH_2 + Br_2 \xrightarrow{500^\circ C - 600^\circ C} \rightarrow$$

- (b) Explain free radical reaction mechanism of halogenations of methane.
- (c) Give chemical reaction, what happens when $CH_2 = CH - CH = CH_2(1,3 \text{ butadiene})$ is treated with bromine in (i) Non-moler solver
 - (i) Non-polar solvent

(i) Wurtz reaction (ii) Oxymercuration-demercuration reaction (b) Differentiate between E_1 and E_2 elimination reaction. 4 (c) Suggest a reasonable mechanism for the transformation of: 4 $CH_3 - CH = CH_2 + HBr \xrightarrow{peroxide} CH_3 - CH_2 - CH_2 - Br$ **UNIT-IV** 7. (a) Give reason why: $3 \times 2 = 6$ (i) Acetylene is more acidic than ethylene and ethane. (ii) Alkynes undergo nucleophilic addition reaction, but alkenes do not. (b) Using Baeyer strain theory, calculate angle strain in cyclopentane and cyclohexane. 2+2=4(c) Draw the different conformation of n-butane (Newmann projection) and show which one is most stable. 4 8. (a) Discuss Baeyer's Strain theory to explain the relative stability of cycloalkane. 4 (b) Complete the following reactions: $2 \times 3 = 6$ (i) $CH_3C \equiv CCH_3 + Br_2 \xrightarrow{\text{carbon tetra chloride}}$ (ii) $CH_2C \equiv CCH_2 + 2HBr \longrightarrow$ (iii) $HC \equiv CH + CH_3OH \xrightarrow{heat} \rightarrow$ (c) Give the reaction mechanism of hydration of acetylene. 4 UNIT_V 9. (a) Explain the following with reaction mechanism: $4 \times 2 = 8$ (i) Sulphonation of benzene (ii) Freidel Craft's alkylation

2+2=4

 $3 \times 2 = 6$

4

(ii) Polar solvent in acidic medium

6. (a) Explain the following name reaction with mechanism:

(d) Write the reaction mechanism of benzylic bromination of toluene.

(b) What is Hückel's rule? What do you understand by the term aromatic, non-aromatic and anti-aromatic?	3
(c) Toluene is nitrated more readily than benzene. Explain.	3
 10. (a) Give reason why: (i) -OH groups on aromatic substitution with electrophilic re-ortho and -para orienting. (ii) Chlorobenzene directs the incoming electrophile to -ortho-para position although chloro-group present in the ring deactivates the ring. 	C
 (b) Explain the Freidel-Craft acylation with reaction mechanism. (c) Give the chemical structure of the following and predict their aromaticity: (i) Pyridine (ii) Pyrrole (iii) Cyclopropene (iv) Thiophene 	4 1×4=4
(iv) Thiophene	