2023

M.Sc.

Fourth Semester DISCIPLINE SPECIFIC ELECTIVE – 03 **PHYSICS** *Course Code: MPHD 4.11 (A)*

(Atmospheric Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Discuss the composition and structure of the atmosphere with a							
		figure c	lescribi	ng the ver	tical struct	ure of the a	tmosphere.	7
	$\langle 1 \rangle$		• ,	C 200 T	070 17	1, , 1		

- (b) A gas mixture of 300 L at 273 K and total pressure of 0.75 atm contains 6.7 mol of hydrogen gas and 3.3 mol of oxygen gas. What is the partial pressure of hydrogen gas?3
- (c) Calculate the virtual temperature correction for moist air at 30°C that has a mixing ratio of 20 g kg⁻¹. 4
- 2. (a) Show that adiabatic process is an isentropic process. 7
 - (b) Derive the Poisson's equation for pressure and temperature. Show that potential temperature is a conservative property. 5+2=7

UNIT-II

3.	(a)	Explain condensation level. What are the factors that lead to an	-	
		and cooling?	2+4=6	
	(b)	Discuss the growth of cloud droplet by condensation along wi	th the	
		relationship of relative humidity, super saturation and droplet rad		
		for curved surface undergoing curvature effect.	6	
	(c)	What are super cooled liquids?	2	
4.	(a)	Show that the solution effect dominates when the radius of dro		
		small for a Kohler curve.	5	
	(b)	What are thunderstorms? How is it formed?	1+4=5	

(c) Determine the fraction of the mass of a supercooled droplet that is frozen in the initial stage of freezing if the original temperature of the droplet is -20°C. What are the percentage increases in the volume of the droplet due to the first and to the second stages of freezing? (Latent heat of melting = 3.3×10^5 Jkg⁻¹; specific heat of liquid water = $4218 \text{ J K}^{-1} \text{ kg}^{-1}$; specific heat of ice = 2106 J K^{-1} ; density of ice = 0.917×10^3 kgm⁻³) 4

UNIT-III

5.	(a)	What are body and surface force?	3
	(b)	Derive the equation of continuity in Eulerian form.	7
	(c)	Write a short note on Rossby number.	4
6.	(a)	Derive the equation of motion in tangential local coordinates.	6
	(b)	Derive an expression for equation of motion of synoptic and large	
		motion in spherical coordinates.	5
	(c)	During winter in the troposphere at 30° latitude, the zonally average	ed
		temperature gradient is found to be 0.75 K per degree of latitude	
		and the zonally averaged component of the geostrophic wind at the	
		Earth's surface is close to zero. Estimate the mean zonal wind at the	e
		jet stream level of 250 hPa.	3

UNIT-IV

7.	(a)	What is barotropic instability? Show that the absolute vorticity must
		be a constant somewhere in the flow for barotropic instability.

(b) Derive the governing equations of the planetary boundary layer using Boussinesq approximation. 7

3+4=7

- 8. (a) What is perturbation theory? Derive the condition that the perturbation field is very small compared to the static field in linear perturbation theory. 2+4=6 $4 \times 2 = 8$
 - (b) Write a short note on the following:
 - (i) Kelvin-Helmholtz instability
 - (ii) The planetary boundary layer

UNIT-V

9. (Show that the potential vorticity flux is directly proportional to the				
	divergence of the Eliassen-Palm flux vector.	6			
((b) Write short notes on the following:	$4 \times 2 = 8$			
	(i) Hadley circulation				
	(ii) Ferrel cells				
10. ((a) Calculate the rate of change of the absolute angular momentu				
	unit mass at a certain latitude with an assumption that the horiz	zontal			
	eddy stress is negligible compared to vertical eddy stress.	7			
((b) What are climate models? Write the basic equations in a clim	ate			
	model.	2+3=5			
((c) Explain briefly data assimilation in numerical weather prediction	on			
	model.	2			