2023

M.Sc. **Fourth Semester**

CORE – 11

PHYSICS

Course Code: MPHC 4.11

(Computational Physics)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

6

 $7 \times 2 = 14$

Answer five questions, taking one from each unit.

UNIT-I

1.	 (a) Explain truncation and round offerror with examples. (b) An approximate value of π is given by 3.14278152 and its true value is 3.14159265. Find the absolute and relative errors in the 	3
	value of π .	3
	(c) Find the real roots of the equation $x^2 - 4x + 2 = 0$, using false	
	position method up to 3 decimal accuracy.	8
2.	(a) Find the roots of the equation $x^2 + 4 \sin x = 0$, using Newton-	
	Raphson method up to 3 decimal accuracy.	8
	(b) Given $f(x) = x^3 - 3x^2 + 5x - 10 = 0$. Find the Taylor series	
	approximation of order 0 to 3 at $x = 1$.	6

UNIT-II

3. (a) Solve the following systems of equations using Gauss - Jordan elimination method: λ

$$x + 2y + z = 8; 2x + 3y + 4z = 20; 4x + 3y + 2z = 16$$

(b) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$

- 4. (a) Solve the following set of equations by
 - (i) Jacobi's method
 - (ii) Gauss-Seidel method (take 5 iterations) 4x + 2z = 4; 5 + 2z = 3; 5x + 4y + 10z = 2

UNIT-III

7

7

8

6

5. (a) Determine the value of y for x = 1.2 from the following data:

x	0	2	4	6	8	
у	-77.5	-69.7	51.5	15.5	169.7	

(b) Fit a second order polynomial to the following data:									
	<i>x</i> 0		1	1 2		4			
	у	1	1.8	1.3	2.5	6.3			

6. (a) Using the values in the given table, find cos(0.28) by linear interpolation and quadratic interpolation. Compare the result with the value 0.96100 (exact value). 3+3=6

x	$f(x) = \cos x$
0.0	1
0.2	0.98007
0.4	0.92106

(b) If the relation between x and y is of the type $y = a.b^x$, using the following values of x and y, find the value of a and b for the best fit curve.

x	2.1	2.5	3.1	3.5	4
y	5.14	6.708	10.29	13.6	21

UNIT-IV

- 7. (a) Using Newton's forward difference formula, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at
 - x = 1.1 for the following data:

x	1	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.75	10.031

(b) Determine integration of the following function using Simpson's $3/8^{th}$ rule taking 12 stripes between the limits $I = \int_{1.3}^{2.5} (x+2\sin x) dx$ Compare the error in numerical integration with respect to analytical solution. 6+2=8

- 8. (a) Evaluate the integral $I = \int_0^1 \frac{1}{x+2} dx$, using
 - (i) Gauss quadrature two point formula
 - (ii) Gauss quadrature three point formula

Determine the error for each with respect to analytical integration.

6+6+1+1=14

UNIT-V

9. (a) Evaluate y(0.1) correct up to 4 decimal place using Taylor series

method, if
$$\frac{dy}{dx} = x^2 + y^2$$
; where $y(0) = 1$. 7

(b) Find y(0.2) by using Euler's method for $\frac{dy}{dx} = -x^2 \cdot y$, where y(2) = 1 and consider h = 0.1.

10. (a) Solve the Poisson's equation $\frac{\partial^2 u}{\partial x^2} = -10(x^2 + y^2 + 10)$ over the square of the sides x = y = 0 to x = y = 3 with u = 0 on boundary and mesh size = 1.