2023

M.Sc. Second Semester CORE – 07 PHYSICS

Course Code: MPHC 2.31 (Nuclear & Particle Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

sion
SIOII
7
ing
6
8

UNIT-II

3.	(a)	Discuss the pair production process during gamma energy interaction	ı
		with matters.	1
	(b)	Explain in detail the Fermi theory of beta decay and Kurie plot. How	1
		is mass of neutrino detected?)
4.	(a)	Write down four properties of neutrinos.	2
	(b)	Why are β -particles of energy 5.5 MeV not observed experimentally	y
		for $I_i = 4$ and $I_f = 0$?	1
	(c)	What are the expected types of gamma ray transitions between the	
		following states of odd atomic mass nuclei:	
		$g_{9/2} \to p_{1/2}, f_{5/2} \to p_{3/2}, h_{11/2} \to d_{5/2}, h_{11/2} \to d_{3/2}?$	3

UNIT-III

(a)	Discuss Ghoshal's experiment to verify compound nucleus.	7
(b)	Derive the expression for density of state per unit internal energy as	
	a function of energy.	7
(a)	Write a note on scattering matrix.	6
(b)	Explain Bohr's compound nucleus theory in detail.	8
	(b) (a)	 (a) Discuss Ghoshal's experiment to verify compound nucleus. (b) Derive the expression for density of state per unit internal energy as a function of energy. (a) Write a note on scattering matrix. (b) Explain Bohr's compound nucleus theory in detail.

UNIT-IV

7.	(a)	Using the semi-empirical formula, calculate the binding energy of	
		$^{40}_{20}Ca$.	4
	(b)	How deformed shells are smoothened by Strutinski method?	10
8.	(a)	Explain the energy levels in a deformed shell model.	7
	(b)	Write a note on Hartree-Fock approximation for two electrons	
		system. How do we find the Hartree-fock wave function?	7

UNIT-V

9.	(a)	Write the interactions which allows the following processes:	
		(i) $\pi^+ \rightarrow e^+ + v_e$ (ii) $\pi^+ + p \rightarrow n + \pi^+ + \pi^+$	4
	(b)	Write a short note on charge conjugation.	4
	(c)	Explain baryon and meson octet.	6
10.	(a)	Two lumps of clay, each of mass m , collide head-on with same	
		velocity $\frac{2}{5}$ C. They stick together. What is the mass <i>M</i> of the final	
		composite lump?	4
	(b)	Explain in detail quantum electrodynamics (QED) and quantum	
		chromodynamics (QCD).	10