2023

M.Sc. Second Semester CORE – 06 PHYSICS Course Code: MPHC 2.21 (Quantum Mechanics - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Explain spin-orbit coupling. Obtain the expression for energy shift in
		the fine structure of hydrogen atom due to spin-orbit interaction.

3+7=10

4

- (b) Calculate the first order correction to ground state energy of harmonic oscillator with perturbation $H' = \lambda x^4$.
- 2. (a) What is Zeeman effect? Obtain the expression for weak-Zeeman splitting of the ground state of hydrogen atom. 7
 - (b) Derive the fundamental result of two fold degenerate perturbation theory.7

UNIT-II

3.	(a)	Explain the principle of variation method. Show that the variation	
		method gives an upper bound to the ground state energy.	7
	(b)	Using appropriate trial wave function, obtain the ground state energy	y
		of harmonic oscillator using variational method.	7
4.	(a)	Obtain the ground state energy of an infinite square well using variational principle.	7
	(b)	Derive an expression for the direct integral and exchange integral fo	r
	. /	hydrogen molecule ion.	7

UNIT-III

5.	(a)	Explain WKB approximation. Obtain the solution of classically		
		allowed region $(E > V)$ for a motion of particle in a time-dependent potential $V(x)$.	nt 7	
	(b)	Using WKB approximation, obtain an expression for transmission coefficient.	7	
6.	· · /	Derive the connection formula for WKB approximation. Explain the concept of field emission of electron using WKB	7	
	(0)	approximation.	7	
		UNIT-IV		
7.	(a)	Discuss time dependent perturbation theory. Obtain expression for		
		first order transition amplitude. 2+5	=7	
	(b)	State and prove Fermi's golden rule.	7	
8.	(a)	What is harmonic perturbation? Obtain expression for transition		
		probability. 1+6-	=7	

- (b) Discuss Einstein coefficients for spontaneous emission. 4
- (c) Write a short note on selection rule and lifetime of an excited state. 3

UNIT-V

- 9. (a) Using the method of partial wave, obtain cross-section for scattering by a perfectly rigid sphere. 8
 - (b) Derive an expression for total scattering cross section in terms of phase shift.
- 10. (a) Explain quantum scattering theory. Show that $\sigma(\theta, \Phi) = |f(\theta, \Phi)|^2$.
 - (b) Show that for a classical hard sphere scattering, the cross-sectional area of the sphere is πr^2 . 7

2+5=7