2023

M.Sc.

Fourth Semester

DISCIPLINE SPECIFIC ELECTIVE – 03

MATHEMATICS

Course Code: MMAD 4.11 (Differential Geometry of Manifolds)

Total Mark: 70 Pass Mark: 28 Time: 3 hours

Answer five *questions, taking* one *from each unit.*

UNIT–I

1. (a) (i) If *X* is a tangent vector, then show that $X(c)=0$, where *c* is a constant. 2 (ii) If X^i and \overline{X}^i are the components of a tangent vector $X \in T_p(M)$ relative to the basis $\{0_i\}$ and $\{\overline{0}_i\}$, then show that $i = \begin{bmatrix} 0 & \mathbf{v} \end{bmatrix}$ $\overline{X}^i = \frac{\partial \overline{x}}{\partial x^j} X$ $=\frac{\partial \overline{x}}{\partial x^j} X^j$ and $X^i = \frac{\partial x^{-i}}{\partial \overline{x}^j} \overline{X}^j$ $X^i = \frac{\partial x^{-i}}{\partial \overline{x}^j} \overline{X}$ $=\frac{\partial x^{-i}}{\partial \overline{x}}^j \overline{X}^j$. 1 (iii) Prove that the general linear group $Gl(n, R)$ is a differentiable manifold of dimension *n*² *.* 3 (b) If $\phi : M_{m} \to M_{m}$ and $\psi : M_{m} \to M_{p}$ are differentiable maps and if *x* lies in the domain of $\psi \circ \phi$, then show that (i) $(\psi \circ \phi)_* = \psi_* \circ \phi_*$ and $(\psi \circ \phi)^* = \phi^* \circ \psi^*$ 1 (ii) $\phi^*(A + B) = \phi^* A + \phi^* B$ and $\phi^*(A \otimes B) = \phi^* A \otimes \phi^* B$. 3 (c) Discuss in detail one–parameter group of transformations. 4 2. (a) Let $\phi = 6dx \wedge dy + 27dx \wedge dz$ and $\psi = dx + dy + dz$, then compute φ ∧ ψ. Again, compute $(5 dx + 3 dy + dz) \wedge (6 dx + 2 dy + 3 dz) \wedge (3 dx + 2 dy)$ 3+3=6

(b) Show that the exterior product is associative, distributive, homogeneous and anticommutative. 8

UNIT–II

- 3. (a) (i) Prove that if a Lie group *G* has dimension *n*, then its Lie algebra Lie(*G*) is also of dimension *n*.
	- (ii) Prove that the set $C^* = GL(l, C)$ is the multiplicative group of nonzero complex numbers.

 $4+3=7$

- (b) Give in detail the definition of general linear group. Prove that if $\phi: G \to G$ is the diffeomorphism of the Lie group *G* defined by $\phi(a) = a^{-1}, a \in G$, then *w* is a left invariant form if and only if $\phi^* w$ is right invariant. 5+2=7
- 4. (a) What do you mean by Lie transformation groups? (b) Define linear frame bundle and bundle homomorphism. $5+4=9$

UNIT–III

- 5. (a) Write the definition of parallelism and use it to prove the following:
	- (i) T_g is a diffeomorphism
	- (ii) $R_a T_a = T_a R_a$
	- (iii) T_g is independent of the parameterization
	- (iv) If γ and σ are two such curves with $\sigma(0) = \gamma(1)$, then $T_{\gamma\sigma} = T_{\sigma} \circ T_{\gamma}$, where T_{σ} is the parallel transformation of the fibre along σ . 10
	- (b) If ϕ is a pseudotensorial *r*–form on L of type (P, V) , then show that the form ϕh defined by $\phi h(X_1, X_2, ..., X_r) = \phi(hX_1, hX_2, ..., hX_r)$, X_i 's∈ T_z is a tonsorial form of type (P, V) . 4
- 6. Prove that:
	- (a) The law of transformation of the coefficients of connection from the

basis
$$
\frac{\partial}{\partial x^i}
$$
 to $\frac{\partial}{\partial \overline{x}^i}$ is $\overline{\Gamma}^p_{qr} = \overline{\Gamma}^i_{jk} \frac{\partial \overline{x}^p}{\partial x^i} \frac{\partial x^j}{\partial \overline{x}^q} \frac{\partial x^k}{\partial \overline{x}^r} + \frac{\partial^2 x^h}{\partial \overline{x}^q \partial \overline{x}^r} \frac{\partial \overline{x}^p}{\partial x^h}$ 4

4

- (b) The symmetric part of coefficients of a connection are coefficients of connection but the skew symmetric part are components of tensors.
- (c) The Lie derivative is derivative, i.e. $3+3=6$
	- (i) $L_X (P+Q) = L_V P + L_V Q$
	- (ii) $L_X(P \otimes Q) = (L_v P) \otimes Q + P \otimes L_v Q$

UNIT–IV

8. (a) Define sectional curvature and prove that a manifold of constant curvature is necessarily an Einstein manifold. 10

(b) State and prove Beltrami's theorem. 4

UNIT–V

- 9. (a) Discuss in detail the normal vector field of a manifold and prove that the normal vector field $V(X, Y)$ is bilinear in *X* and *Y*. 6+2=8
	- (b) If $\overline{\Gamma}$ is a Riemannian connection of a Riemannian manifold related to the metric \overline{g} , than prove that the connection Γ induced on a submanifold is also a Riemannian connection of the submanifold relative to the induced metric *g*. 6
- 10. (a) State and prove Weingarten equations. 2+8=10
	- (b) Show that a necessary and sufficient condition that a submanifold is totally umbilical is that *hV=kVg.* Also, show that the principal curvatures are equal at each umbilical point of a hypersurface. 4