M.Sc.

Fourth Semester

DISCIPLINE SPECIFIC ELECTIVE - 03

MATHEMATICS

Course Code: MMAD 4.11 (Differential Geometry of Manifolds)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

(a) (i) If X is a tangent vector, then show that X(c)=0, where c is a 1. 2 constant. (ii) If X^i and \overline{X}^i are the components of a tangent vector $X \in T_p(M)$ relative to the basis $\{0_i\}$ and $\{\overline{0}_i\}$, then show that $\overline{X}^{i} = \frac{\partial \overline{x}}{\partial r^{j}} X^{j}$ and $X^{i} = \frac{\partial x^{-i}}{\partial \overline{x}^{j}} \overline{X}^{j}$. 1 (iii) Prove that the general linear group Gl(n,R) is a differentiable manifold of dimension n^2 . 3 (b) If $\phi: M_n \to M_m$ and $\psi: M_m \to M_p$ are differentiable maps and if x lies in the domain of $\psi \circ \phi$, then show that (i) $(\psi \circ \phi)_* = \psi_* \circ \phi_*$ and $(\psi \circ \phi)^* = \phi^* \circ \psi^*$ 1 (ii) $\phi^*(A+B) = \phi^*A + \phi^*B$ and $\phi^*(A \otimes B) = \phi^*A \otimes \phi^*B$. 3 (c) Discuss in detail one-parameter group of transformations. 4 2. (a) Let $\phi = 6dx \wedge dy + 27dx \wedge dz$ and $\psi = dx + dy + dz$, then compute $\phi \wedge \psi$. Again, compute $(5dx+3dy+dz) \wedge (6dx+2dy+3dz) \wedge (3dx+2dy)$ 3+3=6 (b) Show that the exterior product is associative, distributive, homogeneous and anticommutative.

UNIT-II

- 3. (a) (i) Prove that if a Lie group G has dimension n, then its Lie algebra Lie(G) is also of dimension n.
 - (ii) Prove that the set $C^* = GL(l, C)$ is the multiplicative group of nonzero complex numbers.

4 + 3 = 7

8

(b) Give in detail the definition of general linear group. Prove that if $\phi: G \to G$ is the diffeomorphism of the Lie group *G* defined by

 $\phi(a) = a^{-1}, a \in G$, then w is a left invariant form if and only if $\phi^* w$ is right invariant. 5+2=7

- 4. (a) What do you mean by Lie transformation groups? 5
 - (b) Define linear frame bundle and bundle homomorphism. 5+4=9

UNIT-III

- 5. (a) Write the definition of parallelism and use it to prove the following:
 - (i) T_{σ} is a diffeomorphism
 - (ii) $R_g T_\sigma = T_\sigma R_g$
 - (iii) T_{σ} is independent of the parameterization
 - (iv) If γ and σ are two such curves with $\sigma(0) = \gamma(1)$, then $T_{\gamma\sigma} = T_{\sigma} \circ T_{\gamma}$, where T_{σ} is the parallel transformation of the fibre along σ . 10
 - (b) If ϕ is a pseudotensorial *r*-form on L of type (*P*,*V*), then show that the form ϕh defined by $\phi h(X_1, X_2, ..., X_r) = \phi(hX_1, hX_2, ..., hX_r)$, X_i 's $\in T_z$ is a tonsorial form of type (*P*,*V*). 4

- 6. Prove that:
 - (a) The law of transformation of the coefficients of connection from the

basis
$$\frac{\partial}{\partial x^{i}}$$
 to $\frac{\partial}{\partial \overline{x}^{i}}$ is $\overline{\Gamma}_{qr}^{p} = \overline{\Gamma}_{jk}^{i} \frac{\partial \overline{x}^{p}}{\partial x^{i}} \frac{\partial x^{j}}{\partial \overline{x}^{q}} \frac{\partial x^{k}}{\partial \overline{x}^{r}} + \frac{\partial^{2} x^{h}}{\partial \overline{x}^{q} \partial \overline{x}^{r}} \frac{\partial \overline{x}^{p}}{\partial x^{h}}$ 4

4

(b) The symmetric part of coefficients of a connection are coefficients of connection but the skew symmetric part are components of tensors.

- (c) The Lie derivative is derivative, i.e. 3+3=6
 - (i) $L_{v}(P+Q) = L_{v}P + L_{v}Q$
 - (ii) $L_x(P \otimes Q) = (L_y P) \otimes Q + P \otimes L_y Q$

UNIT-IV

7.	(a)	Show that the curvature tensors satisfy: 1+3-	+6 = 10
		(i) $K(X, Y, Z) = -K(Y, X, Z)$	
		(ii) $K(X, Y, Z) + K(Y, Z, X) + K(Z, X, Y) = 0$	
		(iii) $(D_x K)(Y, Z, U) + (D_y K)(Z, X, U) + (D_z K)(X, Y, U) = 0$	
	(b)	Use Bianchi's identity to show that $2(\operatorname{div} R)(X) = Xr$.	4

(b) Use Bianchi's identity to show that 2(div R)(X) = Xr.

8. (a) Define sectional curvature and prove that a manifold of constant curvature is necessarily an Einstein manifold. 10 4

(b) State and prove Beltrami's theorem.

UNIT-V

- 9. (a) Discuss in detail the normal vector field of a manifold and prove that the normal vector field V(X, Y) is bilinear in X and Y. 6+2=8
 - (b) If $\overline{\Gamma}$ is a Riemannian connection of a Riemannian manifold related to the metric \overline{g} , than prove that the connection Γ induced on a submanifold is also a Riemannian connection of the submanifold relative to the induced metric g. 6
- 10. (a) State and prove Weingarten equations. 2+8=10
 - (b) Show that a necessary and sufficient condition that a submanifold is totally umbilical is that hV = kVg. Also, show that the principal curvatures are equal at each umbilical point of a hypersurface. 4