2023

M.Sc. Fourth Semester CORE – 12 MATHEMATICS Course Code: MMAC 4.21 (Rings & Modules)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Prove that every finite integral domain is a field.	4
	(b)	If <i>R</i> is any ring, prove that the set $M_n(R)$ of $n \times n$ matrices with	
		entries in R is a ring under matrix addition and matrix multiplication.	5
	(c)	If R is a ring, define R^{op} and prove that it is a ring.	5
2.	(a)	If G is an additive abelian group, prove that the set of all group endomorphisms is a ring under pointwise addition and composition	of
		maps.	5
	(b)	Define local ring and also give some examples of local rings. Prove	

- (b) Define local ring and also give some examples of local rings. Prove that a ring *R* with 1 is a local ring if and only if it has a unique maximal ideal, maximal simultaneously as a left/right/two-sided ideal.
- (c) If I and J are ideals of a ring R, prove that I+J and IJ are also ideals of R. 5

UNIT-II

- 3. (a) If *R* is a ring, prove that *M* is a left *R*-module if and only if *M* is a right R^{op} -module, where R^{op} is the ring opposite to *R*. 5
 - (b) If R is a ring and N is a submodule of an R-module M, prove that the quotient group M/N is an R-module. 5

- (c) If *M* and *N* are *R*-modules and $f: M \to N$ is an *R*-linear map, prove that kernel of *f* is a submodule of *M* and image of *f* is a submodule of *N*.
- 4. (a) If *M* is an abelian group, *R* is a ring and $End_{Z}(M)$ is the ring of all additive endomorphisms of *M*, prove that *M* is a right *R*-module if and only if there exists an anti-homomorphism $\Psi' : R \to End_{Z}(M)$.
 - 5

5

6

4

(b) If N and K are submodules of an R-module M, prove that

$$\frac{N+K}{N} \approx \frac{K}{K \cap N}.$$
5

(c) If P and Q are submodules of an R-module M, prove that P+Q is a submodule of M, containing both P and Q. 4

UNIT-III

- 5. (a) Define the following
 - (i) Direct sum of two modules
 - (ii) Direct summand of a module If *M* and *N* are submodules of a module *P* over a ring *R*, prove that $M \cap N = (0)$ if and only if every element $t \in M + N$ can be uniquely written as t = p + q, where $p \in M, q \in N$.
 - (b) Define free module and prove that every vector space is a free module.
 - (c) Prove that every free module is a projective module and justify that the converse is not true by an example. 5
- 6. (a) Define a torsion module and a torsion-free module. If R is an integral domain and M is an R-module, show that the set T of the torsion elements of M is a submodule of M and the quotient module M/T is torsion-free. 5
 - (b) Prove that the functor $Hom_R(P,)$ is left exact and deduce the condition for *P* to be a projective module.
 - (c) Prove that any abelian group which has a non-trivial element of finite order cannot be free. 3

UNIT-IV

7.	(a)	Define simple module and prove that if A and B are simple modules			
		over a ring K , then any K -linear map $f : A \to B$ is either the zero map or an isomorphism.	4		
	(b)	If $\{M_i\}_{i \in I}$ is a family of <i>R</i> -modules, prove that $\prod_{i \in I} M_i$ is injective	if		
		and only if each M_i is injective.	6		
	(c)	Define divisible module and also give an example. If M is a divisible			
		<i>R</i> -module and <i>N</i> is a submodule of <i>M</i> , prove that M/N is a divisibl module.	e 4		
8.	(a)	Prove that an R -module Q is injective if and only if every exact			
		sequence of the form $0 \to Q \to M \to M'' \to 0$ splits.	6		
	(b)	Prove that every \mathbb{Z} -module can be embedded in an injective			
		Z-module.	4		
	(c)	Define semi-simple module and prove that every homomorphic	4		
		image of a semi-simple module is semi-simple.	4		
UNIT-V					
9.	(a)	Define Artinian and Noetherian modules and also give one example of each. Prove that if a module <i>M</i> is such that it has a submodule <i>N</i> .			
		with both N and M/N Noetherian, then M is Noetherian.	7		

- (b) Define composition series of a non-zero module and module of finite length. Prove that a module is of finite length if and only if it is both Artinian and Noetherian. 7
- 10. (a) Define nil radical and Jacobson radical of a ring and also give one example of each. State and prove Nakayama Lemma. 8 6
 - (b) Prove that every Artinian ring is Noetherian.