2023

M.Sc. Second Semester $CORE - 08$ **MATHEMATICS** *Course Code: MMAC 2.41* (Complex Analysis)

Total Mark: 70 Pass Mark: 28 Time: 3 hours

Answer five *questions, taking* one *from each unit.*

UNIT–I

- 1. (a) Suppose that $z_n = x_n + iy_n (n = 1, 2, 3,...)$ and $z = x + iy$. Prove that $\lim_{n \to \infty} z_n = z$ if and only if $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$. 5
	- (b) Prove that a power series $\sum a_n(z-z_0)$ $\boldsymbol{0}$ $(z - z_0)^n$ *n* $\sum_{n=1}^{\infty} a_n (z-z)$ $\sum_{n=0} a_n (z - z_0)^n$ represents a continous function $S(z)$ at each point inside its circle of convergence $|z-z_0| = R$. 5
	- (c) Show that the following series for sin *z* is absolutely and uniformly convergent for all values of *z*: 4

$$
z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + \frac{(-1)^n z^{2n+1}}{(2n+1)! + \dots}
$$

2. (a) Let *C* denote any contour interior to the circle of convergence of the

power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, and let $g(z)$ be any function that is continous on *C*. Prove that the series formed by multiplying each term of the power series by $g(z)$ can be integrated term by term over *C*. 5

(b) If a series
$$
\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}
$$

converges to $f(z)$ at all points in some annular domian about z_0 , then

prove that it is the Laurent series expansion for *f* in powers of $z - z_0$ for that domian. 5

(c) Show that if
$$
\sum_{n=1}^{\infty} z_n = S
$$
, then $\sum_{n=1}^{\infty} \overline{z}_n = \overline{S}$ 4

UNIT–II

- 3. (a) Give two Laurent series expansions in powers of *z* for the function $f(z) = \frac{1}{z^2(1-z)}$, and specify the regions in which those expansions are valid. 4
	- (b) Prove that an isolated point z_0 of a function f is a pole of order m if and only if $f(z)$ can be written in the form $(z - z_{\rm o})$ $f(z) = \frac{\phi(z)}{2\pi i}$ $=\frac{\phi(z)}{(z-z)}$ where $\phi(z)$ is analytic and nonzero at z_0 . . 5

(c) Determine the residues of the following functions: $2\frac{1}{2} \times 2 = 5$

(i)
$$
\frac{z^2}{z^2 + a^2}
$$
 at $z = ia$
(ii) $\frac{z^3}{}$

(ii)
$$
\frac{z}{(z-1)^4(z-2)(z-3)}
$$
 at $z = 1$

- 4. (a) Evaluate the integral $\int_c \frac{5z-2}{z(z-1)}$ $\int c \cdot z \cdot (z-1)$ *z z z* $\int_{c} \frac{5z-2}{z(z-1)}$ when, *C* is the circle $|z| = 2$, described counterclock-wise. 4
	- (b) Suppose that two functions p and q are analytic at a point z_0 , satisfying $p(z_0) \neq 0$, $q(z_0) = 0$ and $q'(z_0) \neq 0$. Prove that the quotient $\frac{p(z)}{z}$ (z) *p z* $\frac{P(z)}{q(z)}$ has a simple pole at z_0 and $\text{Res}_{z=z_0} \frac{P(z)}{q(z)} = \frac{P(z_0)}{q'(z_0)}$ 0 $Res \frac{p(z)}{z} = \frac{p(z_0)}{z_0}$ $\overline{z=z_0}$ $q(z)$ $q'(z_0)$ $\lim_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)}$ 5 *z*
	- (c) Represent a function $f(z) = \frac{z-1}{(z-1)(z-3)}$ $\sqrt{(z-1)(z-3)}$ by a series of positive and negative powers of $(z - 1)$ which converges to $f(z)$ in the annular region $0 < |z-1| < 2$.

UNIT–III

5. (a) Use residue to find the Cauchy principle value of the integral

$$
\int_{-\infty}^{\infty} \frac{xdx}{(x^2+1)(x^2+2x+2)}
$$

(b) Derive the integration formula

$$
\int_0^\infty \frac{\cos(ax) - \cos(bx)}{x^2} dx = \frac{\pi}{2} (b - a), \ (a \ge 0, b \ge 0)
$$

6. (a) Use residue to evaluate the definite integral \int_{0}^{2} $0 \t1 + a \cos$ *^x d a* $\int_0^{2x} \frac{d\theta}{1 + a\cos\theta}$ 7 (b) Find the Cauchy principle value of the integral $\int_{-\infty}^{\infty} \frac{x \sin x}{x^2 + 2}$ $2x + 2$ *x xdx* $x^2 + 2x$ $\int_{-\infty}^{\infty} \frac{x \sin x dx}{x^2 + 2x + 2}$ 7

UNIT–IV

- 7. (a) Determine the number of zeroes, counting multiplicities of the polynomials
	- (i) $z^4 + 3z^3 + 6$ (ii) $z^4 - 2z^3 + 9z^2 + z - 1$ inside the circle $|z|=2$. 2¹/₂+2¹/₂=5
	- (b) Suppose that a function *f* is analytic inside and on a positively oriented simple closed contour *C* and that ithas no zero on *C*. Show that if *f* has *n* zeroes z_k ($k = 1, 2, ..., n$) inside *C*, where z_k is of multiplic $\frac{(z)}{z}dz = 2\pi$ *n* $\frac{zf'(z)}{z(z)}dz = 2\pi i \sum_{k=1}^{n} m_k z^k$ \mathcal{C}^{\prime}

$$
\text{city } m_k \text{, then } \int_C \frac{zJ(z)}{f(z)} dz = 2\pi i \sum_{k=1}^{\infty} m_k z_k
$$

(c) Define winding number. What is the argument principle? 4

- 8. (a) Using Rouche's theoram, prove that any polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n (a_n \neq 0)$, where $n \ge 1$, has precisely *n* zeroes, counting multiplicities. 6
	- (b) Let *C* denote the unit circle $|z| = 1$, described in the positive sense. Determine the value of Δ_c arg $f(z)$ when $2 \times 2 = 4$

(i)
$$
f(z) = \frac{(z^3 + 2)}{z}
$$

(ii)
$$
f(z) = \frac{(2z-1)^7}{z^3}
$$

(c) Show that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the $\text{circles } |z| = 1 \text{ and } |z| = 2.$ 4

UNIT–V

9. (a) Show that the angle of rotation at a nonzero point $z_0 = r_0 \exp(i\theta_0)$ under the transformation $w = z^n (n = 1, 2, 3,...)$ is $(n-1)\theta_0$. Determine the scale factor of the transformation at that point. 5 (b) Find a linear fractional transformation that maps the points –1, 0, 1 in the *z*-plane onto the points $-i$, 1, *i* in the *w*-plane respectively. 5 (c) Find the image of the half plane *y* > 1 under the transformation $w = (1-i)z$, where $z = x + iy$. 4 10. (a) Find the image of the half plane $x \geq c_1$ ($c_1 > 0$) under the transformation $w = \frac{1}{z}$ where $z = x + iy$. 5 (b) Show that there is only one linear fractional transformation that maps three given distinct points z_1 , z_2 and z_3 in the extended *z*-plane onto three specified distinct points w_1 , w_2 and w_3 in the extended *w*-plane. 5 (c) Show that the transformation $w = \sin z$ is conformal at all points $\operatorname{except} z = \frac{\pi}{2} + n\pi, n \in \mathbb{Z}.$ 4