2023

M.Sc. Second Semester CORE – 08 MATHEMATICS Course Code: MMAC 2.41 (Complex Analysis)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Suppose that $z_n = x_n + iy_n$ (n = 1, 2, 3, ...) and z = x + iy. Prove that $\lim_{n \to \infty} z_n = z$ if and only if $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$. 5
 - (b) Prove that a power series $\sum_{n=0}^{\infty} a_n (z z_0)^n$ represents a continuus function S(z) at each point inside its circle of convergence $|z z_0| = R$.
 - (c) Show that the following series for $\sin z$ is absolutely and uniformly convergent for all values of z: 4

$$z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots + \frac{(-1)^n z^{2n+1}}{(2n+1)! + \dots}$$

2. (a) Let C denote any contour interior to the circle of convergence of the

power series $S(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, and let g(z) be any function that is continous on *C*. Prove that the series formed by multiplying each term of the power series by g(z) can be integrated term by term over *C*. 5

(b) If a series
$$\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n = \sum_{n=0}^{\infty} a_n (z-z_0)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

converges to f(z) at all points in some annular domian about z_0 , then

prove that it is the Laurent series expansion for f in powers of $z - z_0$ for that domian.

(c) Show that if
$$\sum_{n=1}^{\infty} z_n = S$$
, then $\sum_{n=1}^{\infty} \overline{z}_n = \overline{S}$ 4

5

4

UNIT-II

- 3. (a) Give two Laurent series expansions in powers of z for the function f(z) = 1/(z²(1-z)), and specify the regions in which those expansions are valid.
 (b) Prove that an isolated point z₀ of a function f is a pole of order m if
 - (b) Prove that an isolated point z_0 of a function f is a pole of order m if and only if f(z) can be written in the form $f(z) = \frac{\phi(z)}{(z - z_0)^m}$ where $\phi(z)$ is analytic and nonzero at z_0 .

(c) Determine the residues of the following functions: $2\frac{1}{2} \times 2=5$

(i)
$$\frac{z^2}{z^2 + a^2}$$
 at $z = ia$
(ii) $\frac{z^3}{(z-1)^4(z-2)(z-3)}$ at $z = 1$

(a) Evaluate the integral
$$\int \frac{5z-2}{z}$$
 when C is

- 4. (a) Evaluate the integral $\int_{c} \frac{5z-2}{z(z-1)}$ when, *C* is the circle |z| = 2, described counterclock-wise.
 - (b) Suppose that two functions p and q are analytic at a point z_0 , satisfying $p(z_0) \neq 0$, $q(z_0) = 0$ and $q'(z_0) \neq 0$. Prove that the quotient $\frac{p(z)}{q(z)}$ has a simple pole at z_0 and $\operatorname{Res}_{z=z_0} \frac{p(z)}{q(z)} = \frac{p(z_0)}{q'(z_0)} = 5$
 - (c) Represent a function $f(z) = \frac{z}{(z-1)(z-3)}$ by a series of positive and negative powers of (z-1) which converges to f(z) in the annular region 0 < |z-1| < 2.

UNIT-III

5. (a) Use residue to find the Cauchy principle value of the integral

$$\int_{-\infty}^{\infty} \frac{x dx}{(x^2 + 1)(x^2 + 2x + 2)}$$
7

(b) Derive the integration formula

$$\int_{0}^{\infty} \frac{\cos(ax) - \cos(bx)}{x^{2}} dx = \frac{\pi}{2}(b-a), \ (a \ge 0, b \ge 0)$$

6. (a) Use residue to evaluate the definite integral $\int_{0}^{2x} \frac{d\theta}{1 + a \cos \theta}$ 7 (b) Find the Cauchy principle value of the integral $\int_{-\infty}^{\infty} \frac{x \sin x dx}{x^2 + 2x + 2}$ 7

UNIT-IV

- 7. (a) Determine the number of zeroes, counting multiplicities of the polynomials
 - (i) $z^4 + 3z^3 + 6$ (ii) $z^4 - 2z^3 + 9z^2 + z - 1$ inside the circle |z|=2. $2\frac{1}{2}+2\frac{1}{2}=5$
 - (b) Suppose that a function f is analytic inside and on a positively oriented simple closed contour C and that it as no zero on C. Show that if f has n zeroes z_k (k = 1, 2, ..., n) inside C, where z_k is of

multiplicity
$$m_k$$
, then $\int_C \frac{zf'(z)}{f(z)} dz = 2\pi i \sum_{k=1}^n m_k z_k$ 5
Define winding number. What is the argument principle? 4

(c) Define winding number. What is the argument principle?

- 8. (a) Using Rouche's theoram, prove that any polynomial $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n (a_n \neq 0)$, where $n \ge 1$, has precisely n zeroes, counting multiplicities. 6
 - (b) Let C denote the unit circle |z| = 1, described in the positive sense. $2 \times 2 = 4$ Determine the value of $\Delta_c \arg f(z)$ when

(i)
$$f(z) = \frac{(z^3 + 2)}{z}$$

(ii)
$$f(z) = \frac{(2z-1)^7}{z^3}$$

(c) Show that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and |z| = 2.

UNIT-V

4

(a) Show that the angle of rotation at a nonzero point 9. $z_0 = r_0 \exp(i\theta_0)$ under the transformation $w = z^n (n = 1, 2, 3, ...)$ is $(n-1)\theta_0$. Determine the scale factor of the transformation at that point. 5 (b) Find a linear fractional transformation that maps the points -1, 0, 1 in the z-plane onto the points -i, 1, i in the w-plane respectively. 5 (c) Find the image of the half plane y > 1 under the transformation w = (1-i)z, where z = x + iy. 4 10. (a) Find the image of the half plane $x \ge c_1(c_1 > 0)$ under the transformation $w = \frac{1}{2}$ where z = x + iy. 5 (b) Show that there is only one linear fractional transformation that maps three given distinct points z_1, z_2 and z_3 in the extended z-plane onto three specified distinct points w_1, w_2 and w_3 in the extended 5 w-plane. (c) Show that the transformation $w = \sin z$ is conformal at all points except $z = \frac{\pi}{2} + n\pi$, $n \in \mathbb{Z}$. 4