2023

M.Sc. Second Semester CORE – 07 MATHEMATICS Course Code: MMAC 2.31 (Number Theory)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT – I

1.	(a) Show that $n \mid (n-1)!$ for all composite integers greater than 4.	5
	(b) If <i>m</i> is odd, show that 2, 4, 6,, 2 <i>m</i> is a complete residue system modulo <i>m</i> .	em 4
	(c) Find all the solutions of $57x \equiv 87 \pmod{105}$.	5
2.	(a) Prove/disprove: If $a^3 b^3$, then $a b$	4
	(b) For any integer <i>n</i> , show that $42 n^7 - n$	5
	(c) Solve: $x^3 + 2x - 3 \equiv 0 \pmod{9}$	5
	UNIT – II	
3.	(a) State and prove Euler's criterion.	7
	(b) Derive that formula for the Legendre symbol $\left(\frac{2}{p}\right)$,	
	where <i>p</i> is an odd prime.	7
4.	(a) If p and q are distinct odd primes, prove that	
	$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left\{(p-1)/2\right\}\left\{(q-1)/2\right\}}$	7

(b) If Q is odd, show that the Jacobi symbol $\left(\frac{-1}{Q}\right) = (-1)^{(Q-1)/2}$

UNIT – III

7

7

5

5.	(a)	Show that the Diophantine equation $x^4 - y^4 = z^2$ has no solution	on
		for positive integers x, y, z.	9
	(b)	Prove that in a primitive Pythagorean triple x, y, z , the product x	y is
		divisible by 12 and the product xyz is divisible by 60.	5
6.	(a)	Prove that $y^2 = x^3 + 7$ has no solution in integers.	7
	(b)	Prove that in a primitive Pythagorean triple x, y, z, not more that	one
		of <i>x</i> , <i>y</i> , or <i>z</i> can be a perfect square.	5
	(c)	Give a Pythagorean triple whose terms form a geometric	
		progression.	2

UNIT-IV

- 7. (a) Show that the greatest common divisor of two Fibonacci numbers is a Fibonacci number. 7
 - (b) Show that the sum of the first *n* Fibonacci numbers with odd indices is given by $u_1 + u_3 + u_5 + \dots + u_{2n-1} = u_{2n}$ 7
- 8. (a) Show that two consecutive Fibonacci numbers are relatively prime.
 - (b) Show that the sum of the squares of the first *n* Fibonacci numbers is given by $u_1^2 + u_2^2 + u_3^2 + \dots + u_n^2 = u_n u_{n+1}$ 7

UNIT – V

9. (a) Compute the convergents of the simple continued fraction [1;2,3,3,2,1] (b) If $C_k = p_k / q_k$ denotes the *k*th convergent of the finite simple continued fraction [1;2,3,4,...,n,n+1], show that

$$p_{n} = np_{n-1} + np_{n-2} + (n-1)p_{n-3} + \dots + 3p_{1} + 2p_{0} + (p_{0} + 1)$$
 9

9

- 10. (a) Evaluate p_k , q_k , and C_k (k = 0, 1, ...8) for the simple continued fraction [1;1,2,1,2,1,2,1,2]
 - (b) By means of continued fractions, determine the general solutions of the Diophantine equation 19x + 51y = 1 5