2023

M.Sc. Second Semester $CORE = 06$ **MATHEMATICS** *Course Code: MMAC 2.21* (Measure Theory)

Total Mark: 70 Pass Mark: 28 Time: 3 hours

Answer five *questions, taking* one *from each unit.*

UNIT–I

- 1. (a) Define a ring and a σ -ring . If $X = \mathbb{R}$, the real line, then show that the class $P = \{ [a, b) : a, b \in \mathbb{R}, a \le b \}$ is a ring. 2+4=6
	- (b) Prove that if A is an algebra of subsets of a set X then $\mathcal{M}(\mathcal{A}) = \mathcal{S}(\mathcal{A})$, that is, the smallest monotone class and the smallest $σ-algebra containing algebra A are the same.$ 8
- 2. (a) Let *X* be a non-empty set and C be any class of subsets of a set *X*. Show that the intersection of all σ -algebras containing $\mathcal C$ is a σ -algebra and it is the smallest σ -algebra on *X* containing C. σ
	- (b) Show that a σ-ring is a monotone class and that a monotone ring is a σ-ring . $(3\frac{1}{2}+3\frac{1}{2}=7)$

UNIT–II

- 3. (a) Prove that if $\mathcal A$ is an algebra of subsets of *X* and $\mu : \mathcal A \to [0, \infty]$ a set function with $\mu(\emptyset) = 0$, then μ is countably additive if and only if μ is both finitely additive and countably subadditive. $\frac{7}{2}$
	- (b) Prove that if *S** the class of all μ*-measurable subsets of *X* is an algebra of subsets of *X* , and μ* restricted to *S** is finitely additive. 7

4. (a) Define outer measure μ* on an algebra of subsets of a set *X*. Prove that the set function $\mu^* : P(X) \to [0, \infty]$ is countably additive.

 $2+6=8$

(b) Let (E_n) be a sequence of measurable sets. Prove that if $E_1 \subseteq E_2 \subseteq \dots, \text{ then } \mu(\lim_n E_n) = \lim_n \mu(E_n).$ 6

UNIT–III

- 5. (a) Prove that the Lebesgue outer measure of an interval is equal to its length. The contract of the co
	- (b) Let $\mathcal A$ be an algebra of subsets of a set X and μ a measure on $\mathcal A$. Then prove that there exists a σ -algebra S^* (the σ -algebra of μ^* -measurable subsets of *X*) and a measure μ^* on S^* such that $\mathcal{A} \subseteq \mathcal{S}^*$ and $\mu^*(A) = \mu(A) \forall A \in \mathcal{A}$. 7
- 6. (a) Let $E \subseteq \mathbb{R}$. Prove that if *E* is a Lebesgue measurable set, then for every $\varepsilon > 0$, there exists an open set G_{ε} such that $E \subseteq G_{\varepsilon}$ and $\lambda^*(G_{\varepsilon}-E) < \varepsilon$. 7
	- (b) Let $A \in \mathcal{L}$ and $x \in \mathbb{R}$. Show that: 3¹/₂×2=7
		- (i) $A + x \in \mathcal{L}$, where $A + x = \{y + x : y \in A\}$
		- (ii) $-A \in \mathcal{L}$, where $-A = \{-v : v \in A\}$

UNIT–IV

- 7. (a) Prove that if *f* and *g* are measurable functions, then the three sets ${x \in X : f(x) > g(x)}, {x \in X : f(x) \ge g(x)}$ and ${x \in X : f(x) = g(x)}$ are all measurable. Moreover, show that the functions $f \vee g$, $f \wedge g$, f^+ , f^- and $|f|$ are all measurable functions. 8
	- (b) Prove that if $\mu(X) < +\infty$ and $f_n \to f$ almost uniformly on X, then $f_n \to f$ almost everywhere. Give an example of a sequence that converges pointwise but not almost uniformly with respect to the Lebesgue measure λ . 4+2=6
- 8. (a) Let (X, S, μ) be a complete measure space. Then prove the following statements:
	- (i) Given $f, g: X \to \mathbb{R}^*$, and if *f* is measurable then *g* is measurable.
	- (ii) If (f_n) is a sequence of measurable functions from *X* to \mathbb{R}^* and if $f: X \to \mathbb{R}^*$ such that $f(x) = \lim_n f_n(x)$ holds for almost everywhere then *f* is measurable. $4+4=8$
	- (b) Let $\mu(X) < +\infty$. Prove that if (f_n) converge almost everywhere to *f*, then (f_n) converges in measure to *f*. 66

UNIT–V

- 9. (a) For $s, s_1, s_2 \in L_0^+$ and $\alpha \in \mathbb{R}$ with $\alpha \geq 0$, prove that the following statements hold:
	- (i) $0 \leq \int s d\mu \leq +\infty$
	- (ii) $\alpha s \in L_0^+$ and $\int (\alpha s) d\mu = \alpha \int s d\mu$
	- (iii) $s_1 + s_2 \in L_0^+$ and $\int (s_1 + s_2) d\mu = \int s_1 d\mu + \int s_2 d\mu$
	- (iv) For $E \in S$, we have $S \chi_E \in L_0^+$, and set function *v* on *E* is given by $\int s \chi_E d\mu$ is a measure on *S*. Also, $\nu(E) = 0$ whenever $\mu(E) = 0, E \in S$. 1+1+2+4=8
	- (b) For $f \in L$, prove that $f \in L_1(\mu)$ if and only if $|f| \in L_1(\mu)$. Further, in either case show that $\left| \int f d\mu \right| \le \int |f| du$. 3+3=6
- 10. (a) State and prove the monotone convergence theorem. 1+7=8

(b) Let $f \in L_1(\mu)$ and $E \in S$. Show that $\chi_F f \in L_1(\mu)$, where

 $\int_E f du := \int \chi_E f du$. Further, if $E, F \in S$ are disjoint sets, show that $\int_{F \cup F} = \int_{F} f d\mu + \int_{F} f d\mu$. 3+3=6