2023

M.Sc. Second Semester CORE – 06 MATHEMATICS Course Code: MMAC 2.21 (Measure Theory)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Define a ring and a σ -ring. If $X = \mathbb{R}$, the real line, then show that the class $\mathcal{P} = \{[a,b): a, b \in \mathbb{R}, a \le b\}$ is a ring. 2+4=6
 - (b) Prove that if A is an algebra of subsets of a set X then $\mathcal{M}(A)=\mathcal{S}(A)$, that is, the smallest monotone class and the smallest σ -algebra containing algebra A are the same. 8
- 2. (a) Let X be a non-empty set and C be any class of subsets of a set X. Show that the intersection of all σ -algebras containing C is a σ -algebra and it is the smallest σ -algebra on X containing C. 7
 - (b) Show that a σ -ring is a monotone class and that a monotone ring is a σ -ring . $(3\frac{1}{2}+3\frac{1}{2}=7)$

UNIT-II

- 3. (a) Prove that if \mathcal{A} is an algebra of subsets of X and $\mu : \mathcal{A} \to [0, \infty]$ a set function with $\mu(\emptyset) = 0$, then μ is countably additive if and only if μ is both finitely additive and countably subadditive. 7
 - (b) Prove that if S^* the class of all μ^* -measurable subsets of X is an algebra of subsets of X, and μ^* restricted to S^* is finitely additive. 7

4. (a) Define outer measure μ^* on an algebra of subsets of a set *X*. Prove that the set function $\mu^* : P(X) \to [0,\infty]$ is countably additive.

2+6=8

 $3^{1/2} \times 2 = 7$

6

(b) Let (E_n) be a sequence of measurable sets. Prove that if $E_1 \subseteq E_2 \subseteq \dots$, then $\mu(\lim_n E_n) = \lim_n \mu(E_n)$.

UNIT-III

- 5. (a) Prove that the Lebesgue outer measure of an interval is equal to its length. 7
 - (b) Let A be an algebra of subsets of a set X and μ a measure on A. Then prove that there exists a σ-algebra S* (the σ-algebra of μ*-measurable subsets of X) and a measure μ* on S* such that A ⊆ S* and μ*(A) = μ(A)∀A ∈ A.
- 6. (a) Let E ⊆ ℝ. Prove that if E is a Lebesgue measurable set, then for every ε > 0, there exists an open set G_ε such that E ⊆ G_ε and λ*(G_ε − E) < ε.
 - (b) Let $A \in \mathcal{L}$ and $x \in \mathbb{R}$. Show that:
 - (i) $A + x \in \mathcal{L}$, where $A + x := \{y + x : y \in A\}$
 - (ii) $-A \in \mathcal{L}$, where $-A := \{-y : y \in A\}$

UNIT-IV

- 7. (a) Prove that if f and g are measurable functions, then the three sets $\{x \in X : f(x) > g(x)\}, \{x \in X : f(x) \ge g(x)\}$ and $\{x \in X : f(x) = g(x)\}$ are all measurable. Moreover, show that the functions $f \lor g, f \land g, f^+, f^-$ and |f| are all measurable functions. 8
 - (b) Prove that if µ(X) < +∞ and f_n → f almost uniformly on X, then f_n → f almost everywhere. Give an example of a sequence that converges pointwise but not almost uniformly with respect to the Lebesgue measure λ.

- (a) Let (X, S, μ) be a complete measure space. Then prove the following statements:
 - (i) Given $f, g: X \to \mathbb{R}^*$, and if f is measurable then g is measurable.
 - (ii) If (f_n) is a sequence of measurable functions from X to ℝ* and if f: X → ℝ* such that f(x) = lim f_n(x) holds for almost everywhere then f is measurable.
 - (b) Let $\mu(X) < +\infty$. Prove that if (f_n) converge almost everywhere to f, then (f_n) converges in measure to f. 6

UNIT-V

- 9. (a) For $s, s_1, s_2 \in L_0^+$ and $\alpha \in \mathbb{R}$ with $\alpha \ge 0$, prove that the following statements hold:
 - (i) $0 \le \int sd\mu \le +\infty$
 - (ii) $\alpha s \in L_0^+$ and $\int (\alpha s) d\mu = \alpha \int s d\mu$
 - (iii) $s_1 + s_2 \in L_0^+$ and $\int (s_1 + s_2) d\mu = \int s_1 d\mu + \int s_2 d\mu$
 - (iv) For $E \in S$, we have $s\chi_E \in L_0^+$, and set function v on E is given by $\int s\chi_E d\mu$ is a measure on S. Also, v(E) = 0 whenever $\mu(E) = 0, E \in S$. 1+1+2+4=8
 - (b) For $f \in L$, prove that $f \in L_1(\mu)$ if and only if $|f| \in L_1(\mu)$. Further, in either case show that $|\int f d\mu| \leq \int |f| du$. 3+3=6
- 10. (a) State and prove the monotone convergence theorem. 1+7=8

(b) Let $f \in L_1(\mu)$ and $E \in S$. Show that $\chi_E f \in L_1(\mu)$, where

 $\int_{E} f du := \int \chi_{E} f du \text{ . Further, if } E, F \in \mathcal{S} \text{ are disjoint sets, show that}$ $\int_{E \cup F} = \int_{E} f d\mu + \int_{F} f d\mu \text{ .} \qquad 3+3=6$