2023

M.Sc. Second Semester CORE – 08 CHEMISTRY Course Code: MCHC 2.41

(Physical Chemistry - III)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Explain the basic idea of potential energy surfaces.	3
	(b)	Derive the rate equation for transition state theory using derivation	1.
			4
	(c)	Give the thermodynamic formulation of CTST.	7
2.	(a)	Discuss the double sphere model for activated complex.	5
	(b)	What are the factors which determines the reaction rates in solution	n?
			2
	(c)	Explain with the help of a neat diagram the generalized kinetic theorem	ry.
			7

UNIT-II

3.	(a)	What are van't Hoff intermediates? Explain.	3
	(b)	Explain with the help of a neat diagram the activation energies for	
		catalyzed reactions.	4
	(c)	What are acidity functions? Explain.	7
4.	(a)	Write a note on catalytic activity and acid-base strength.	5
	(b)	Give the mechanism of acid-base catalysis taking two extreme case	es
		$k_2 \ll k_{-1}[B]$ and $k_{-1}[B] \ll k_2$.	6
	(c)	Write the Michaelis-Menten equation.	3

UNIT-III

5.	(a)	Discuss the Hammet equation. Give its uses and limitations.	5
	(b)	Write a note on Hinshelwood's treatment.	5
	(c)	Explain the ion-dipole and dipole-dipole reactions.	4
6.	(a)	Explain the theory of unimolecular reactions.	3
	(b)	Using van't Hoff equation, explain pressure effect and volume of	
		activation.	5
	(c)	Write an account on the influence of ortho- and meta-directing	
		groups on reaction kinetics.	6
		UNIT-IV	

7.

8.

(a)	Explain the pyrolysis of acetaldehyde.	5
(b)	Give a detailed account on the kinetics of the hydrogen-bromine	
	reaction.	4
(c)	Write a note on the kinetics aspects of polymerization reactions.	5
(a)	Discuss the mechanism of cationic polymerization.	6
(b)	Give a comparative account of the hydrogen-halogen reactions.	5
(c)	What is autocatalysis? Explain.	3

UNIT-V

9.	(a)	How is molar mass of a polymer determined using light scattering	
		method?	6
	(b)	Equal masses of polymer molecules with $M_1 = 10,000$ and	
		$M_2 = 100,000$ are mixed. Calculate number and mass average	
		molecular mass of the polymer.	4
	(c)	Write short notes on the following:	4
		(i) Electrically conducting polymers	
		(ii) Graft polymers	
10.	(a)	Explain the sedimentation process for determining the molar mass or	f
		polymer.	5
	(b)	Write the kinetics of anionic polymerization.	4
	(c)	Give a detail account on polymerization reactions.	5