2023

B.A./B.Sc. Second Semester GENERIC ELECTIVE – 2 STATISTICS Course Code: STG 2.11

(Introductory probability)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1. (a) If *X* and *Y* are two random variables with variances σ_X^2 and σ_Y^2 respectively and *r* is the coefficient of correlation between them. If

$$U = X + KY$$
 and $V = X + \left(\frac{\sigma_x}{\sigma_y}\right)Y$, find the value of K so that U and

Vare uncorrelated.

(b) The random variables X and Y are jointly normally distributed and U and V are defined by $U = X \cos \alpha + Y \sin \alpha$ and

$$V = Y \cos \alpha - X \sin \alpha$$
. Show that U and V will be uncorrelated if

$$\tan 2\alpha = \frac{2r\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}.$$
4

- (c) Fit a second degree equation $Y = a + bx + cx^2$ by the method of least square. 3
- 2. (a) Show that the coefficient of correlation r is independent of change of scale and origin of the variable. Also prove that two independent variables are uncorrelated. 5+2=7
 - (b) Fit an exponential curve $Y = ab^x$ by the method of least square. 4
 - (c) Define regression analysis. Prove that if one of the regression coefficients is greater than unity, the other must be less than unity.

1+2=3

UNIT-II

- 3. (a) Define partial and multiple correlation. Write the properties of multiple correlation coefficients. 2+3=5
 - (b) Show that the partial correlation coefficient between X_1 and X_2 is

$$r_{12.3} = \frac{\operatorname{cov}(X_{1.3}, X_{2.3})}{\sqrt{\operatorname{var}(X_{1.3})\operatorname{var}(X_{2.3})}}.$$

- (c) Explain two properties of residuals. $1\frac{1}{2}+1\frac{1}{2}=3$
- 4. (a) In the usual notations, prove that

$$R_{_{123}}^{2} = \frac{r_{12}^{2} + r_{13}^{2} - 2r_{12}r_{23}r_{31}}{1 - r_{23}^{2}} \le r_{12}^{2}$$

$$6$$

(b) If r_{12} and r_{13} are given, show that

 $r_{12}r_{13} - \sqrt{(1 - r_{12}^2 - r_{13}^2 + r_{12}^2 r_{13}^2)} \le r_{12} \le r_{12}r_{13} + \sqrt{(1 - r_{12}^2 - r_{13}^2 + r_{12}^2 r_{13}^2)}$ And if $r_{12} = k$ and $r_{13} = -k$, show that r_{23} will lie between -1 and $1 - 2k^2$. 4 + 4 = 8

UNIT-III

5. (a) A random variable X has the following probability function:

Value	0	1	2	3	4	5	6	7
of <i>X</i> , <i>x</i> :								
P(x)	0	k	2 <i>k</i>	2 <i>k</i>	3 <i>k</i>	k^2	$2 k^2$	$7 k^2 + k$

(i) Find k

- (ii) Evaluate $P(X \le 6)$, $P(X \ge 6)$ and $P(0 \le X \le 5)$
- (iii) If $P(X \le a) > \frac{1}{2}$, find the minimum value of a

(iv) Determine the distribution function of X. 1+2+1+2=6

- (b) Define random variable. Discuss different types of random variables with examples. 1+3=4
- (c) In four tosses of a coin, let *X* be the number of heads. Tabulate the 16 possible outcomes with the corresponding values of *X*. By simple

counting, derive the probability distribution of X and hence calculate the expected value of X. 4

6. (a) Define the following:

11/2+11/2=3

1+4=5

6

- (i) Convergence in probability
- (ii) Moment generating functions
- (b) Show that the mathematical expectation of the sum of two random variable is the sum of their individual expectations. 2
- (c) A coin is tossed until a head appears. What is the expectation of the number of tosses required? 4
- (d) State and prove Chebyshev's inequality.

UNIT-IV

- 7. (a) Derive the Poisson distribution as a limiting case of binomial distribution.
 - (b) A coffee connoisseur claims that he can distinguish between a cup of instant coffee and a cup of percolator coffee 75% of the time. It is agreed that hid claim will be accepted if he correctly identifies at least 5 of the 6 cups. Find his chances of having the claim
 - (i) accepted
 - (ii) rejected, when he does have the ability he claims 4
 - (c) Obtain the mean and variance of the hyper geometric distribution. 4
- 8. (a) Determine the binomial distribution for which the mean is 4 and the variance is 3 and find its mode. 3
 - (b) Define hyper geometric distribution. Obtain the binomial distribution as a limiting case of hyper geometric distribution. 1+3=4
 - (c) Obtain the moment generating function of geometric distribution. 3
 - (d) If X and Y are independent Poisson variates such that P(X=1) = P(X=2) and P(Y=2) = P(Y=3). Find the variance of X-2Y. 4

UNIT-V

9. (a) Define exponential distribution. Hence, obtain its mean, variance, and m.g.f. 1+4=5

- (b) Find the normal distribution as a limiting form of binomial distribution. Prove that for normal distribution, the quartile deviation, the mean deviation and the standard deviation are approximately 10:12:15. 4+5=9
- 10. (a) Define rectangular distribution. Hence obtain its mean, variance and m.g.f. 1+4=5
 - (b) If *X* is uniformly distributed with mean 1 and variance $\frac{4}{3}$, find P(X < 0).
 - (c) Obtain the mean, variance and m.g.f. of the normal distribution.

1+1+4=6

3