2023

B.A./B.Sc.

Sixth Semester

CORE-14

STATISTICS

Course Code: STC 6.21 (Multivariate Analysis & Index Numbers)

Total Mark: 70 Time: 3 hours Pass Mark: 28

7

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Derive the bivariate normal distribution stating the assumptions. Hence write down the form of the distribution if the parameters are $(0, 0, 1, 1, \rho)$. 5+2=7
 - (b) Show that if X_1 and X_2 are independent normal variates with correlation coefficient ρ between them, then the correlation coefficient between X_1^2 and X_2^2 is given by ρ^2 .
- 2. (a) Obtain the marginal distribution of the random variable *X* of bivariate normal distribution. 7
 - (b) Let X₁ and X₂ be two independent standard normal variates and let the random variables Y₁ and Y₂ be defined by Y₁ = 2X₁ + X₂, Y₂ = 2X₂ X₂
 Find E(Y₁), E(Y₂), Cov(Y₁, Y₂) and the joint p.d.f. of Y₁, Y₂ i.e. f(y₁, y₂).

UNIT-II

3.	· · ·	Define and derive the multivariate normal distribution. Obtain the moment generating function of multivariate normal	2+6=8
		distribution.	6
4.	(a)	Give Rao's definition of multivariate normal distribution.	2

- (b) Determine the value of the constant *k* of the multivariate normal distribution.
- (c) If *X* have a multivariate normal distribution with covariance matrix

$$\sum \begin{bmatrix} 1 & p & p^2 \\ p & 1 & 0 \\ p^2 & 0 & 1 \end{bmatrix}$$
 then show that the conditional distribution of

 (X_1, X_2) given $X_3 = x_3$ is also multivariate normal with mean

$$\mu = \begin{bmatrix} \mu_1 + p^2 (x_3 - \mu_3) \\ \mu_2 \end{bmatrix} \text{ and covariance matrix} \begin{bmatrix} 1 - p^4 & p \\ p & 1 \end{bmatrix}. \qquad 6$$

UNIT-III

5.	(a)	(a) Define σ -scores and standard scores. What are the advantage			
		σ -scores?	2+2+1=5		
	(b)	Define reliability of test scores. Describe the methods of Te	est-Retest		
		and split-half for assessing the reliability of a test.	2+2+2=6		
	(c)	Describe the index of reliability.	3		
6.	(a)	Define normalized scores. Explain clearly the method of co	nod of converting		
		raw test scores into T-scores.	2+4=6		
	(b)	What do you understand by validity of test scores? Discus	s the		

UNIT-IV

- 7. (a) What is meant by index numbers? Mention the uses of index numbers. 2+3=5
 - (b) Why is Fisher's index called ideal index? Show that Fisher's index number satisfies both the time reversal test and factor reversal test.

2+4=6

6

(c) If L(p), L(q) and P(p), P(q) represents respectively the Laspeyre's and Paasche's index numbers for prices and quantities, show that

$$\frac{L(p)}{L(q)} = \frac{P(p)}{P(q)}$$
3

- 8. (a) Mention different types of index numbers. Explain the various characteristics of index numbers. 2+3=5
 - (b) What are time reversal test and factor reversal test? Examine whether Laspeyre's and Paasche's index numbers satisfy these tests or not. 3+3=6

3

7

(c) Write a note on implicit weights and explicit weights.

UNIT-V

- 9. (a) Give the concept of cost of living index number. Mention the uses of cost of living index number. 2+4=6
 - (b) Discuss the steps to be followed in the construction of cost of living index numbers. 8
- 10. (a) Describe the methods of construction of cost of living index numbers.
 - (b) Write notes on <u>any two</u> of the following: $3\frac{1}{2}\times2=7$
 - (i) Index numbers of industrial production
 - (ii) Index number of agricultural production
 - (iii) Wholesale price index number.