2023 B.A./B.Sc. Fourth Semester CORE – 8 STATISTICS Course Code: STC 4.11 (Statistical Inference)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

(a) What is an estimator? When would you say that estimate of a 1. parameter is good? 2+1=3(b) Define unbiased estimator and minimum variance unbiased estimator. 2+2=4(c) If $x_1, x_2, ..., x_n$ is a random sample from a normal population $N(\mu, 1)$. Show that $t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of $u^{2} + 1$ 3 (d) Let T_1 and T_2 be two unbiased estimates of $\gamma(\theta)$ with variances σ_1^2, σ_2^2 and correlation ρ . What is the best unbiased linear combination of T_1 and T_2 and what is the variance of such a combination? 4 (a) Define an efficient estimator. 2 2. (b) Let T_1 and T_2 be two unbiased estimates of $\gamma(\theta)$ with efficiencies e_1 and e_2 respectively and $\rho = \rho_{\theta}$ be the correlation coefficient between them, then $\sqrt{e_1e_2} - \sqrt{(1-e_1)(1-e_2)} \le \rho \le \sqrt{e_1e_2} + \sqrt{(1-e_1)(1-e_2)}$ 5 (c) X_1, X_2 and X_3 is a random sample of size 3 from a population with mean value μ and variance $\sigma^2 \cdot T_1, T_2, T_3$ are the estimators used to estimate mean value μ where

$$T_{1} = X_{1} + X_{2} - X_{3}$$
$$T_{2} = 2X_{1} + 3X_{3} - 4X_{2}$$

and $T_3 = \frac{1}{3} (\lambda X_1 + X_2 + X_3)$

- (i) Are T_1 and T_2 unbiased estimators?
- (ii) Find the value of λ such that T_3 is unbiased estimator for μ .
- (iii) With this value of λ is T_3 a consistent estimator?
- (iv) Which is the best estimator? 2+2+1+2=7

UNIT-II

- 3. (a) State and prove Cramer-Rao inequality. 2+5=7 (b) Define confidence interval and confidence limits. Obtain 100(1/x)%
 - (b) Define confidence interval and confidence limits. Obtain $100(1-\alpha)\%$ confidence limits for the parameter λ of the Poisson distribution

$$f(x,\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}; x = 0, 1, 2, \dots$$
 2+5=7

4. (a) Let X and Y be a random variables such that $E(Y) = \mu$ and

 $\operatorname{Var}(Y) = \sigma_Y^2 > 0$. Let E(Y|X=x). Then show that

- (i) $E[\mathcal{O}(X)] = \mu$
- (ii) $\operatorname{Var}\left[\mathcal{O}(X)\right] \leq \operatorname{Var}(Y)$ 3+4=7

(b) Define MVB. Show that $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, in a random sampling from

an exponential population having p.d.f. $f(x, \theta) = \frac{1}{\theta} e^{\frac{-x}{\theta}}; 0 < x < \infty$,

where $0 < \theta < \infty$, in an MVB estimator of θ and has variance $\frac{\theta^2}{2+5=7}$.

UNIT-III

5. (a) Find the M.L.E. for the parameter λ of a Poisson distribution on the basis of a sample of size *n*. 4

(b) Describe the method of moments for estimating the parameters. What are the properties of the estimates obtained by this method?

3+2=5

- (c) Find the Bayes' estimator of the parameter p of a binomial distribution with x successes out of n given that the prior distribution of p is a beta distribution with parameters α and β . 5
- 6. (a) Prove that the M.L.E. of the parameter α of a population having

density function $\frac{2}{\alpha^2}(\alpha - x)$; $0 < x < \alpha$. For a sample of unit is 2x, x being the sample value. Also show that the estimate is biased. 5

(b) Estimate α and β in the case of Pearson's type III distribution

$$f(x;\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, 0 \le x < \infty$$
5

(c) What modification in minimum chi-square method of estimation gives rise to the method of modified minimum chi-square? What properties the minimum chi-square estimators hold?

UNIT-IV

- 7. (a) Define most powerful test? (b) Let *p* be the probability that a coin will fall head in a single test in order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected if more than 3 heads are obtained. Find α and $1-\beta$. 5
 - (c) Describe likelihood ratio test and state its important properties.
 - 5+2=7

2

- 8. (a) Define unbiased test and unbiased critical region with usual notations.
 - (b) Use the Neyman-Pearson Lemma to obtain the region for testing $\theta = \theta_0$ against $\theta = \theta_1 > \theta_0$ and $\theta = \theta_1 < \theta_0$, in the case of a normal population $N(\theta, \sigma^2)$, where σ^2 is known. 7
 - (c) Explain the test for the equality of means of two normal populations when population variances are unequal. 5

UNIT-V

9.	(a)	What is distribution free test? When should the non-parametric	
		method be preferably used? 2+2	=4
	(b)	Explicate sign test for testing paired samples?	5
	(c)	Stating the underlying assumptions and the null hypothesis, develop	
		the Wilcoxon test.	5
10.	(a)	Explain the main difference between parametric and non-parametri	c
		approaches to the theory of statistical inference.	5
	(b)	Describe Wald-Wolfowitz run test for testing an identicalness of tw	' 0
		populations.	5
	(c)	How can one use the Kolmogorov-Smirnov test for two sample	
		problem?	4