2023

B.A./B.Sc. Fourth Semester GENERIC ELECTIVE – 4 PHYSICS Course Code: PHG 4.11

(Elements of Modern Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	State the Planck's hypothesis to explain the spectral distribution of the intensity of radiation from a black body? Derive Planck's		
		radiation law. 3+5=	=8	
	(b)	Derive Einstein's photoelectric equation.	3	
	(c)	lculate the work function in electron volts of a metal, given that		
		photoelectric threshold wavelength is 6800 Å.	3	
2.	(a)	Derive the de Broglie relation for matter waves.	3	
	(b)) State the postulates of Bohr's theory of the hydrogen atom. Derive		
		the expressions for radius of Bohr orbit and energy of the electron in		
		the n th orbit. Draw the energy level diagram of the hydrogen atom		
		and hence explain the emission of the Lyman and Balmer series of		
		lines. 2+3+4=	=9	
	(c) Find the longest wavelength present in the Balmer series of hy		en,	
		corresponding to the H α line.	2	

UNIT-II

3.	(a)	Deduce the time-independent Schrodinger's wave equation	n. Give the
		significance of the wave function.	10+2=12
	(b)	Give the conditions for a well behaved wave function.	2

4.	(a) State the postulates of quantum mechanics.	3
	(b) Using time dependent form of the wave function, deduce the	
	operators for momentum and energy.	3+3=6
	(c) Explain the normalization of a wave function.	2
	(d) Normalise the one dimensional wave function given by	
	$\Psi(x) = A\sin(\pi xa), 0 < x < a$	
	$\Psi(x) = 0$, outside	3

UNIT-III

- 5. (a) A particle of mass *m* is confined to a one dimensional closed box with infinitely rigid walls at x = 0 and x = L. Calculate the values of energy of the particle in a one-dimensional box. Obtain the corresponding wave functions. 10
 - (b) Find the lowest energy of a neutron confined to a nucleus of size 10^{-14} m. Given, mass of the neutron = 1.67×10^{-27} kg. 4
- 6. (a) A particle of mass m travelling along x-axis has a potential barrier

defined as
$$V(x) = \begin{cases} 0, & x < 0 \\ V_0, & x > 0 \end{cases}$$

Calculate the expression for reflection and transmission coefficient of the particle. 12

2

(b) What is quantum mechanical tunnelling?

UNIT-IV

7.	(a)	Derive Heisenberg's uncertainty relation from a hypothetical gan	nma
		ray microscope. Discuss its physical importance. 6	+2=8
	(b)	State time energy uncertainty relation and obtain it from position	l
		momentum uncertainty principle.	3
	(c)	The position and momentum of 0.5 keV electron are simultaneo determined. If its position is located within 0.2 nm, what is the	usly
		percentage uncertainty in its momentum?	3
8.	(a)	Explain the non-existence of free electrons in the nucleus.	3

- (b) By applying uncertainty principle, explain minimum energy of harmonic oscillator and existence of finite zero point energy. 2+2=4
- (c) Life time of a nucleus in the excited state is 10^{-12} s. Calculate the probable uncertainty in energy and frequency of a γ ray photon emitted by it.

4

3

2+3=5

(d) Explain any two properties of nucleus.

UNIT-V

- 9. (a) Define the terms decay constant, half life, and average life as applied to a radioactive substance. Find the relation between them. 3+4=7
 - (b) State and explain the laws of radioactive disintegration process. 4
 - (c) The half life of U_{92}^{238} is 4.51×10^9 years. What percentage of U_{92}^{238} that existed 10^{10} years ago still survives? 3
- 10. (a) Explain the existence of continuous spectrum of β particles. Describe the neutrino theory of β decay. 3+3=6
 - (b) The polonium isotope Po_{84}^{210} is unstable and emits a 5.30 MeV alpha particle. The atomic mass of Po_{84}^{210} is 209.9829 u and that of He⁴₂ is 4.0026 u. Identify the daughter nuclide and find its atomic mass. 3
 - (c) Write short notes on the following:
 - (i) Nuclear isomerism
 - (ii) Internal conversion