2023

B.A./B.Sc.

Sixth Semester DISCIPLINE SPECIFIC ELECTIVE – 4 PHYSICS

> Course Code: PHD 6.21 (B) (Atmospheric Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Discuss the composition of the atmosphere.	4
	(b)	Derive the equation of state for a mixture in terms of its mean molar	
		weight.	5
	(c)	Derive the hydrostatic equation.	5
2.	(a)	What are cyclones and anticyclones?	4
	(b)	What are thunderstorms? Explain the formation of thunderstorms.	
		2+5=	:7
	(c)	A gas mixture of 300 L at 273 K and total pressure of 0.75 atm	
		contains 6.7 mol of hydrogen gas and 3.3 mol of oxygen gas. What	
		is the partial pressure of hydrogen gas?	3

UNIT-II

3.	(a)	What are fundamental forces? Derive an expression for the to	otal
		pressure gradient force per unit mass.	1+5=6
	(b)	Discuss scale analysis with an illustration.	4
	(c)	Write a short note on quasi biennial oscillation.	4
4.	(a)	Derive an expression for the vectorial form of the momentum	
		equation in rotating coordinate system.	6
	(b)	State and prove the Bjerknes's circulation theorem.	1+4=5

(c) At the 300-hPa (around 10 km) level along 40° N during winter, the zonally averaged zonal wind [*u*] is eastward at 20 m s⁻¹ and the zonally averaged meridional wind component [*v*] is southward at 30 cm s⁻¹. Estimate the vorticity and divergence averaged over the polar cap region poleward of 40° N.

UNIT-III

5.	(a)	Discuss the propagation of atmospheric gravity waves in a non-	
		homogeneous medium.	6
	(b)	Derive an expression for the propagation of Rossby waves in three	
		dimensions.	6
	(c)	Explain briefly Lamb wave.	2
6.	(a)	Discuss the difference between deep-water wave and shallow water	r
		with respect to the depth of water and wavelength of the wave.	6

- (b) Write a short note on the following: $4 \times 2 = 8$
 - (i) Surface water waves
 - (ii) Acoustic waves

UNIT-IV

7.	(a)	Discuss the various types of atmospheric radar.	7
	(b)	Describe the working of a radar. Derive the radar equation.	3+4 =7
8.	(a)	Discuss the application of a lidar. Write four differences betw	veen
		radar and lidar.	4+4=8
	(b)	Explain in detail the working and theory of a moving target in	dicator
		radar.	6

UNIT-V

9.	(a)	Discuss the spectral distribution of the solar radiation.	5
	(b)	Prove that Rayleigh scattering cross section of an air molecule is	
		inversely proportional to the fourth power of the wavelength.	6
	(c)	Write three properties of aerosols.	3
10.	(a)	Discuss the radiative effect and health effect of atmospheric aeroso	ols
		on human.	4

- (b) If the rate of decrease in the number concentration N of a mono dispersed aerosol due to coagulation is given by $-(dN/dt) = KN^2$, where $K = 1.40 \times 10^{-15} \text{ m}^3 \text{s}^{-1}$ for 0.10 micro meter diameter particles at 20°C and 1 atm, determine the time required at 20°C and 1 atm for coagulation to decrease the concentration of a monodispersed atmospheric aerosol with particles of a diameter of 0.100 micro meter to one-half of its initial concentration of $1.00 \times 10^{-11} \text{ m}^3$. 4 1+5=6
- (c) State and prove the Bouguert-Lambert law.