2023

B.A./B.Sc.

Sixth Semester DISCIPLINE SPECIFIC ELECTIVE – 3 PHYSICS

Course Code: PHD 6.11 (Advanced Mathematical Physics - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Two particles of masses m_1 and m_2 move under the action of their	r
		gravitational interaction, find the Lagrangian equation of motion of	fthe
		particles.	4
	(b)	Define geodesic. Show that the shortest distance between two	
		points in a plane is a straight line. 1+.	3=4
	(c)	Explain the principle of virtual work and derive the D'Alembert's	
		principle from the principle of virtual work.	6
2.	(a)	Explain the terms degrees of freedom and generalized coordinates	S
		with examples.	4
	(b)	Obtain the equation of motion of a system of two masses, connect	ted
		by an inextensible string passing over a small smooth pulley.	4
	(c)	A particle slides from rest at one point on a frictionless wire in a	

(c) A particle slides from rest at one point on a frictionless wire in a vertical plane to another point under the influence of the earth's gravitational field. If the particle travels in the shortest time, show that the path followed by it is a cycloid.

UNIT-II

3. (a) Show that the transformation $Q = \log\left(\frac{1}{q}\sin p\right)$; $P = q\cot p$ is

canonical.

- (b) Use Hamilton's principle to find the equation of motion of onedimensional harmonic oscillator.
- (c) Prove that for any three functions F, G and K of p_k and q_k, the following relation holds true:
 [F, [G, K]] + [G, [K, F]] + [K, [F, G]] = 0
- 4. (a) Obtain the necessary relations for Legendre transformations. 4
 - (b) Write the Hamiltonian for a simple pendulum and deduce its equation of motion.
 - (c) Prove that $[J_{z}, J_{y}] = -J_{x}$

UNIT-III

- 5. (a) In *Z*, we define a * b = a + b + 1. Show that (*Z*,*) is an abelian group. 6
 - (b) Verify the group property of symmetry of equilateral triangle (D_3) also known as C_{3V} . 8
- 6. (a) Show that the cube root of unity is an abelian group under multiplication.
 - (b) If $a, b \in a$ then show that the equation a * x = b and y * a = b have unique solution in the group *G*. 8

UNIT-IV

- 7. (a) There are two urns. The 1st urn contains three bags containing 5 white and 3 black balls. The 2nd urn contains 2 bags containing 2 white and 4 black balls. A white ball is drawn at random. What is the probability that this ball has been drawn from the 1st urn?
 - (b) If *A* and *B* be any two events such that $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{3}$, and

$$P(A \cup B) = \frac{1}{2}$$
. Find
(i) $P(B \mid A)$

- (ii) $P(A \cup B')$
- (iii) P(A / B')

4

4

6

6

(c) A continuous random variable X takes values in the interval $1 \le x \le 3$. The probability density function of X is given by

$$f(x) = \frac{k}{x^2}.$$

- (i) Determine the value of *K*.
- (ii) Find E(x) and variance of X.
- 8. (a) Determine the co-efficient of $x^{11}y^4$ in the expansion of $(2x^2-3xy^2+z^2)^6$.
 - (b) The probability that a pen manufactured by a company will be defective is 2/10. If 10 such pens are manufactured, find the probability that
 - (i) at least 2 will be defective
 - (ii) exactly 3 will be defective
 - (c) A random variable X has the following probability distribution

X	0	1	2	3	4	5	6	7
P(x)	0	K	2 <i>K</i>	2 <i>K</i>	3 <i>K</i>	K^2	$2K^2$	$7K^2 + K$

Find
$$P\left(\frac{1.5 < x < 4.5}{x > 2}\right)$$

UNIT-V

- 9. (a) A manufacturer knows that the condenser he makes contain on an average 1% defective. He packs them in boxes of 100. What is the probability that a box picked at random will contain 3 or more defective condenser?
 - (b) Find the first four moments of binomial distribution.
- 10. (a) Using the method of least square, fit a straight line to the four points.

x	1	2	3	4	
у	1.7	1.8	2.3	3.2	

4

10

5

6

4

- (b) The distribution of 500 workers in a factory is approximately normal with mean Rs. 75 and standard deviation Rs.15. Find the number of workers who receive weekly wages
 - (i) More than Rs. 90
 - (ii) Less than Rs. 46
- (c) The following data are the number of seeds germinating out of 10 on damp filter for 80 seeds. Fit a binomial distribution to these data:

x	0	1	2	3	4	5	6	7	8	9	10
f	6	20	23	12	8	6	0	0	0	0	0

5