2023 B.A./B.Sc. Sixth Semester CORE – 13 PHYSICS Course Code: PHC 6.11 (Electromagnetic Theory)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1. (a) Establish the boundary condition for the tangential component of H.

6

- (b) Derive the four-dimensional Poisson's equation by using the concept of Coulomb's and Lorentz gauges and show that the d'Alembertian plays the same role in four dimensions as Laplacian plays in classical mechanics.
- 2. (a) Discuss the potential formulation in electrodynamics and show that the four Maxwell's equations reduce to two inhomogeneous wave equations in terms of the vector and scalar potentials. 8
 - (b) A parallel plate capacitor with circular plates of radius *a* is charged. Compute the electromagnetic energy flux through the lateral surface of the capacitor after neglecting the fringing effect.

UNIT-II

- 3. (a) Show that the field vectors \vec{E} , \vec{H} and \vec{K} are mutually perpendicular to each other during the propagation of an electromagnetic wave in an isotropic medium. 7
 - (b) Derive an expression for the skin depth of an electromagnetic wave propagating in an isotropic medium. 7

- 4. (a) Derive an expression for the reflection coefficient at a conducting surface.
 - (b) Explain the propagation of electromagnetic waves in ionosphere.
 - (c) The electric field of an electromagnetic wave propagating through free space is represented as

$$\vec{E}(r,t) = E_0 \cos(100\sqrt{3}\pi x - 100y - \omega t)\hat{z}$$

Calculate the propagation vector along z-axis and compute the value of ω . 3

UNIT-III

- 5. (a) Calculate the reflection and transmission coefficient at normal incidence for an electromagnetic wave propagating between two non-conducting media.
 - (b) Derive the Fresnel's equation for the reflection and refraction of electromagnetic waves at a plane boundary separating two media when the incident wave is polarized parallel to the plane of incidence.

7

6

7

7

4

- 6. (a) Show that the transmitted part of an electromagnetic wave is propagated only parallel to the surface and is attenuated exponentially beyond the surface. Explain evanescent wave. 6+2 =8
 - (b) Calculate the reflection coefficient for perpendicular and parallel component of ordinary light reflected from glass of refractive index 1.5 at an angle of incidence 45°.

UNIT-IV

- 7. (a) Discuss the theory and working of a Babinet compensator. Write one use of the instrument. 5+1=6
 (b) Write short notes on the following: 4×2=8
 (i) Polarization of electromagnetic waves
 - (ii) Birefringence
- 8. (a) How are plane polarized, elliptically polarized and circularly polarized light produced experimentally?

	(b)	What is the wavelength of light required to convert a plane polarized light into circularly polarized light if the minimum thickness is			
		$0.856 \mu\text{m}$ with a difference of refractive index between the ordinary and extra ordinary light is $0.172?$	4		
	(c)	Explain the working of a half wave plate. Calculate its thickness.	4		
		UNIT-V	n the working of a half wave plate. Calculate its thickness. 4 UNIT-V		
•	(a)	Derive the condition of continuity at interface during the propagation			
		of an electromagnetic wave.	7		
	(b)	Explain step and graded indices.	4		
	(c)	A step index fibre is with a core of refractive index 1.56 and cladding	σ		

9

- (c) A step index fibre is with a core of refractive index 1.56 and cladding of refractive index 1.50. Calculate the intermodal dispersion per kilometre of length of the fibre and the total dispersion in a 10 km length of the fibre.
- 10. (a) Discuss the classification of optical fibre based on its structure. 5
 - (b) Discuss the experimental verification of Fresnel's theory of optical rotation.

5

4

(c) Explain the construction and working of a Laurent's half shade polarimeter.